File size: 2,771 Bytes
73abaf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language:
- id
---
## English NER in Flair (default model)
This is the POS model for Indonesian that ships with [Flair](https://github.com/flairNLP/flair/). The architecture of this model uses **FastText**.
- F-score (micro) = **0.9345**
- F-score (macro) = **0.8735**
- Accuracy = **0.9345**
Predicts 19 tags:
| **Tag** | **Meaning** |
|----------|-----------------------------------|
| NOUN | Noun (person, place, thing, or idea) |
| PROPN | Proper noun (specific name) |
| PUNCT | Punctuation (marks like commas, periods, etc.) |
| VERB | Verb (action or state) |
| ADP | Adposition (prepositions or postpositions) |
| PRON | Pronoun (substitute for a noun) |
| ADJ | Adjective (describes a noun) |
| NUM | Numeral (number or quantity) |
| DET | Determiner (a word that modifies a noun) |
| CCONJ | Coordinating conjunction (joins clauses or words) |
| ADV | Adverb (modifies a verb, adjective, or another adverb) |
| AUX | Auxiliary verb (helps the main verb) |
| SCONJ | Subordinating conjunction (introduces subordinate clauses) |
| PART | Particle (small word that doesn’t change in form, e.g., "not") |
| SYM | Symbol (mathematical or other special symbols) |
| X | Other (words that don't fit standard POS categories) |
| INTJ | Interjection (expresses strong emotion or reaction) |
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`).
You also need to download the **model** file locally to use it.
You can find training or fine-tuning code here : https://github.com/bwbayu/product_name_clustering/blob/main/additional/train_pos_flair.ipynb
```python
from flair.data import Sentence
from flair.models import SequenceTagger
tagger = SequenceTagger.load("model")
text = "aku pergi ke pasar"
sentence = Sentence(text)
tagger.predict(sentence)
for token in sentence:
print(f"{token.text} ({token.get_label('upos').value})")
```
This yields the following output:
```
aku (PRON)
pergi (VERB)
ke (ADP)
pasar (NOUN)
```
---
### Cite
Please cite the following paper when using this model.
```
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
```
---
### Issues?
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/). |