File size: 18,733 Bytes
7923a5a e0a50c6 7923a5a e0a50c6 7923a5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# coding=utf-8
# The following code are reused from the QWen project (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) of Alibaba Cloud.
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is modified by ByteDance and Tsinghua University from the original implementation of Qwen:
# - We changed Qwen2Config to Qwen2TSConfig to support time series modeling.
""" Qwen2 model configuration"""
from transformers import PretrainedConfig
from transformers.utils import logging
from typing import *
logger = logging.get_logger(__name__)
class Qwen2TSConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import Qwen2Model, Qwen2Config
>>> # Initializing a Qwen2 style configuration
>>> configuration = Qwen2Config()
>>> # Initializing a model from the Qwen2-7B style configuration
>>> model = Qwen2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
TINYTIMEMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class TinyTimeMixerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TinyTimeMixerModel`]. It is used to instantiate a
TinyTimeMixer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the TinyTimeMixer {} architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
context_length (`int`, *optional*, defaults to 64)
The context/history length for the input sequence.
patch_length (`int`, *optional*, defaults to 8)
The patch length for the input sequence.
num_input_channels (`int`):
Number of input variates. For Univariate, set it to 1.
patch_stride (`int`, *optional*, defaults to 8):
Amount of points to stride. If its value is same as patch_length, we get non-overlapping patches.
d_model (`int`, *optional*, defaults to 16):
Hidden feature size of the model.
prediction_length (`int`, *optional*, defaults to 16)
Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon.
expansion_factor (`int`, *optional*, defaults to 2):
Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model.
num_layers (`int`, *optional*, defaults to 3):
Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model.
dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `TinyTimeMixer` backbone. Recommended range is 0.2-0.7
mode (`str`, *optional*, defaults to `"common_channel"`):
Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In
"common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel
mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In
"mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred
approach when channel correlations are very important to model)
gated_attn (`bool`, *optional*, defaults to `True`):
Enable Gated Attention.
norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`):
Normalization layer (BatchNorm or LayerNorm).
self_attn (`bool`, *optional*, defaults to `False`):
Enable Tiny self attention across patches. This can be enabled when the output of Vanilla TinyTimeMixer with
gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling
across patches.
self_attn_heads (`int`, *optional*, defaults to 1):
Number of self-attention heads. Works only when `self_attn` is set to `True`.
use_positional_encoding (`bool`, *optional*, defaults to `False`):
Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is
set to `True`.
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when
`use_positional_encoding` is set to `True`
scaling (`string` or `bool`, *optional*, defaults to `"std"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
loss (`string`, *optional*, defaults to `"mse"`):
The loss function for the model. Defaults to mean squared error "mse". Allowed values: ["mse", "mae"]
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
post_init (`bool`, *optional*, defaults to `False`):
Whether to use custom weight initialization from `transformers` library, or the default initialization in
`PyTorch`. Setting it to `False` performs `PyTorch` weight initialization.
norm_eps (`float`, *optional*, defaults to 1e-05):
A value added to the denominator for numerical stability of normalization.
adaptive_patching_levels (`int`, *optional*, defaults to 0):
If adaptive_patching_levels is i, then we will have i levels with each level having n_layers.
Level id starts with 0. num_patches at level i will be multipled by (2^i) and num_features at level i will be divided by (2^i).
For Ex. if adaptive_patching_levels is 3 - then we will have 3 levels:
level 2: num_features//(2^2), num_patches*(2^2)
level 1: num_features//(2^1), num_patches*(2^1)
level 0: num_features//(2^0), num_patches*(2^0)
adaptive_patching_levels = 1 is same as one level PatchTSMixer. This module gets disabled when adaptive_patching_levels is 0 or neg value. Defaults to 0 (off mode).
resolution_prefix_tuning (`bool`, *optional*, defaults to `False`):
Enable if your dataloader has time resolution information as defined in `get_freq_mapping` function in `modelling_tinytimemixer`.
frequency_token_vocab_size (`int`, *optional*, defaults to 5):
Vocab size to use when resolution_prefix_tuning is enabled.
head_dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `TinyTimeMixer` head.
prediction_channel_indices (`list`, *optional*):
List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all
channels and we explicitly filter the channels in prediction and target before loss computation. Please provide the indices
in sorted ascending order.
decoder_num_layers (`int`, *optional*, defaults to 8):
Number of layers to use in decoder
decoder_d_model(`int`, *optional*, defaults to 16):
Defines the hidden feature size of the decoder.
decoder_adaptive_patching_levels (`int`, *optional*, defaults to 0):
Adaptive Patching levels for decoder. Preferable to set it to 0 for decoder to keep it light weight.
decoder_raw_residual (`bool`, *optional*, defaults to `False`):
Flag to enable merging of raw embedding with encoder embedding for decoder input. Defaults to False.
decoder_mode (`string`, *optional*, defaults to `"common_channel"`):
Decoder channel mode. Use `"common_channel" for channel-independent modelling and `"mix_channel"` for channel-mixing modelling
use_decoder (`bool`, *optional*, defaults to `True`):
Enable to use decoder.
prediction_filter_length (`int`,*optional*, defaults to None):
Actual length in the prediction output to use for loss calculations.
Example:
```python
>>> from transformers import TinyTimeMixerConfig, TinyTimeMixerModel
>>> # Initializing a default TinyTimeMixer configuration
>>> configuration = TinyTimeMixerConfig()
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = TinyTimeMixerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "tinytimemixer"
attribute_map = {
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
# Time series specific configuration
context_length: int = 64,
patch_length: int = 8,
num_input_channels: int = 1,
prediction_length: int = 16,
patch_stride: int = 8,
prediction_channel_indices: Optional[list] = None,
# General model configuration
d_model: int = 16,
expansion_factor: int = 2,
num_layers: int = 3,
dropout: float = 0.2,
mode: str = "common_channel",
gated_attn: bool = True,
norm_mlp: str = "LayerNorm",
self_attn: bool = False,
self_attn_heads: int = 1,
use_positional_encoding: bool = False,
positional_encoding_type: str = "sincos",
scaling: Optional[Union[str, bool]] = "std",
loss: str = "mse",
init_std: float = 0.02,
post_init: bool = False,
norm_eps: float = 1e-5,
adaptive_patching_levels: int = 0,
resolution_prefix_tuning: bool = False,
frequency_token_vocab_size: int = 5,
# General head configuration
head_dropout: float = 0.2,
# decoder parameters
decoder_num_layers: int = 8,
decoder_d_model: int = 8,
decoder_adaptive_patching_levels: int = 0,
decoder_raw_residual: bool = False,
decoder_mode: str = "common_channel",
use_decoder: bool = True,
# prediction length filtering
prediction_filter_length: Optional[int] = None,
**kwargs,
):
self.num_input_channels = num_input_channels
self.context_length = context_length
self.patch_length = patch_length
self.expansion_factor = expansion_factor
self.num_layers = num_layers
self.dropout = dropout
self.mode = mode
self.gated_attn = gated_attn
self.norm_mlp = norm_mlp
self.scaling = scaling
self.head_dropout = head_dropout
self.patch_last = True
self.use_positional_encoding = use_positional_encoding
self.positional_encoding_type = positional_encoding_type
self.prediction_length = prediction_length
self.prediction_channel_indices = prediction_channel_indices
self.self_attn = self_attn
self.self_attn_heads = self_attn_heads
self.init_std = init_std
self.post_init = post_init
self.loss = loss
self.norm_eps = norm_eps
self.use_decoder = use_decoder
self.adaptive_patching_levels = adaptive_patching_levels
self.resolution_prefix_tuning = resolution_prefix_tuning
self.decoder_num_layers = decoder_num_layers
self.decoder_adaptive_patching_levels = decoder_adaptive_patching_levels
self.decoder_raw_residual = decoder_raw_residual
self.decoder_mode = decoder_mode
self.frequency_token_vocab_size = frequency_token_vocab_size
self.d_model = d_model
self.patch_stride = patch_stride
self.decoder_d_model = decoder_d_model
self.init_processing = False
self.prediction_filter_length = prediction_filter_length
super().__init__(**kwargs)
def check_and_init_preprocessing(self):
self.init_processing = True
if not hasattr(self, "num_patches"):
self.num_patches = (
max(self.context_length, self.patch_length) - self.patch_length
) // self.patch_stride + 1
if self.resolution_prefix_tuning:
self.num_patches += 1
if self.prediction_filter_length is not None:
if self.prediction_filter_length > self.prediction_length or self.prediction_filter_length <= 0:
raise ValueError("prediction_filter_length should be positive and less than prediction_length")
if self.prediction_channel_indices is not None:
self.prediction_channel_indices.sort()
|