My first commit to the Hub
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 261.25 +/- 16.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79520937c0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79520937c160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79520937c1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79520937c280>", "_build": "<function ActorCriticPolicy._build at 0x79520937c310>", "forward": "<function ActorCriticPolicy.forward at 0x79520937c3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79520937c430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79520937c4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x79520937c550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79520937c5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79520937c670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79520937c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x795209390040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 12345, "action_noise": null, "start_time": 1703117120404293993, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM3pT6f+Uk/9T3MvNV9x75JTXM+6j/tvQAAAAAAAAAAGi+pPa5BtLqTbgkz+aDyroLmLzrQsrezAACAPwAAAAAmPpU9habIuxLFOrzMaY483/EXPXrTcL0AAIA/AACAP819jbyuqZG6ynCfONHilTO9aLK65X+4twAAgD8AAIA/zX/2vA/1Xz5J2xg+doiQvlbdLz2pX5A9AAAAAAAAAACNvZO9HBkDvG1zK7yDEZU8PqZXPZP8eL0AAIA/AACAP8DRuz3hfIa6HRjgOilehzV8uWq683wCugAAgD8AAIA/mgXePFyfUbozJ823d2wtsmpAarsFKfA2AACAPwAAgD8wrlC+6ILdPUVRlz7EKoK+9ZSEPNYyGj0AAAAAAAAAAI1f7r1nqjU/EtC0vZeetL523ta9k+l+PAAAAAAAAAAADUPdvZc5uD/rQ7K+66ipvq5/470+biK+AAAAAAAAAADmUpG9tbRcPuS3FT7vGYa+DHftvI2P7jwAAAAAAAAAAE3JjT53a8I+zYkEvfx4k75MVxM+XfHhvQAAAAAAAAAAmlkWuzw/qD8uVc68MF4Qv/gmr7rSnuQ8AAAAAAAAAADm1729T1b2PkyQCL1GLqm+yFl/vZ3a6DwAAAAAAAAAABr9Fj490hi7ugEkuMm65zTvalK86kdCNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHXZwS8J2OMAWyUTQgBjAF0lEdAoM903CKrJnV9lChoBkdAcNe8RL9MsmgHS/JoCEdAoM+gcLjPwHV9lChoBkdAcFegTRIBimgHS/doCEdAoM/LMRpUP3V9lChoBkdAbeKsf7rLQ2gHTRwBaAhHQKDP/5dGAkN1fZQoaAZHQHEL1mBe5WloB00aAWgIR0Cg0APTw2ETdX2UKGgGR0BxgOSMcZLqaAdNEAFoCEdAoNARZ+x4ZHV9lChoBkdAce6cIJJGv2gHS/toCEdAoNAZdyDIzXV9lChoBkdAcs+mGM4tH2gHS/JoCEdAoNA9itq59XV9lChoBkdAcJq/4ZdfLWgHTSEBaAhHQKDQYwDeTFF1fZQoaAZHQFWzJzDGcWloB0vlaAhHQKDQkC9ytFN1fZQoaAZHQCWgjOcDr7hoB0u+aAhHQKDQt/Aj6ep1fZQoaAZHQHLDlwLmZE5oB007AWgIR0Cg0RpNTLntdX2UKGgGR0BvnHOv+wTuaAdNMAFoCEdAoNE7q6e5F3V9lChoBkdAcnxwgDA8CGgHTSQBaAhHQKDROhysCDF1fZQoaAZHQG8+9BKL879oB00NAWgIR0Cg0bJ0W/JvdX2UKGgGR0BMbyXUpd8iaAdLwmgIR0Cg0qKv/zasdX2UKGgGR0BwucID5j6OaAdL7GgIR0Cg0sYSg5BDdX2UKGgGR0Bw+IhA4XGfaAdNBwFoCEdAoNLZoXbdrXV9lChoBkdAcUDxKQJXyWgHS+VoCEdAoNL8c4o7WHV9lChoBkdAcHoA6Mir1mgHS9toCEdAoNMzxkNF0HV9lChoBkdAcyOIV/MGHGgHTRoBaAhHQKDTRFvQ4S91fZQoaAZHQD4uHpKSPlxoB0vTaAhHQKDTTmxt52R1fZQoaAZHQHAG01ZTyaxoB00JAWgIR0Cg02TKLbYcdX2UKGgGR0ByYqyY5T60aAdNHgFoCEdAoNOuGZeAu3V9lChoBkdAcukT+NtIkWgHTRMBaAhHQKDUtZrYXft1fZQoaAZHQEqJDlYEGJNoB0vBaAhHQKDUvvNu+AV1fZQoaAZHQHL3RWDHwPRoB0v6aAhHQKDU1U8V58l1fZQoaAZHQHAf86BAfMhoB00AAWgIR0Cg1QnRb8m8dX2UKGgGR0BxuFeF+NLlaAdNdgFoCEdAoNUyamXPaHV9lChoBkdAbzajps41g2gHTQ8BaAhHQKDVNrbg0j11fZQoaAZHQHCSGl67dzpoB0veaAhHQKDV8D+R5kd1fZQoaAZHQGgJ3ocJdB1oB03oA2gIR0Cg1iTz3AVPdX2UKGgGR0Bw5y6XjU/faAdNBwFoCEdAoNagppeu3nV9lChoBkdAb9sl3Qla82gHTQEBaAhHQKDWw65Gz8h1fZQoaAZHQHCPt3jdYXBoB00QAWgIR0Cg1txbSqlxdX2UKGgGR0Bwh9Sde6ZqaAdL8GgIR0Cg1vmOMl1KdX2UKGgGR0BzDc0IkZ75aAdNCgFoCEdAoNcn6AOJ+HV9lChoBkdAb5uWweNkv2gHTQsBaAhHQKDXO7V8Ti91fZQoaAZHQHGWs8s+V1RoB00tAWgIR0Cg17FUADJVdX2UKGgGR0Bu/f1xsEaEaAdNCQFoCEdAoNha2jO9nXV9lChoBkdAbmP2EkB0ZGgHTVUBaAhHQKDYrf3N9ph1fZQoaAZHQHEuk/wAlv9oB00pAWgIR0Cg2LhKcurZdX2UKGgGR0Bzl/n+yZ8baAdNLgFoCEdAoNkeFBY3enV9lChoBkdAb5/Zwn6VMWgHTTUBaAhHQKDZeUSqU/x1fZQoaAZHQHIteaOPvKFoB00HAWgIR0Cg2bYKIBRydX2UKGgGR0BxASoo/iYLaAdNAwFoCEdAoOWsbcXWOXV9lChoBkdASHg6p5u63GgHS9RoCEdAoOXF/z8P4HV9lChoBkdAcSfF0xM362gHS/VoCEdAoOYIqTbFj3V9lChoBkdAcwC3/Pw/gWgHTawBaAhHQKDmXINEw351fZQoaAZHQHFHXFglWwNoB00bAWgIR0Cg5mdX9zfadX2UKGgGR0BxY0sqaw2VaAdL+2gIR0Cg5mylFc6edX2UKGgGR0BwNbNqxkd4aAdL+mgIR0Cg5nreQ+2WdX2UKGgGR0ByyvwmVqveaAdNFgFoCEdAoOaCVSn+AHV9lChoBkdAb5ZH3lCCz2gHS+BoCEdAoOcm3hGYr3V9lChoBkdAbnxKxLTQV2gHTQoBaAhHQKDoDkCFK051fZQoaAZHQEtHGsmv4dpoB0vDaAhHQKDoKDtgKF91fZQoaAZHQHBJnUhFEzBoB00hAmgIR0Cg6FYt6HCXdX2UKGgGR0Bx6ZIsiB5HaAdNQgFoCEdAoOjbWd3B6HV9lChoBkdAcUsVvddmhGgHTZMBaAhHQKDo9IlMRHx1fZQoaAZHQHJiWN3np0RoB00tAWgIR0Cg6Pa86FM7dX2UKGgGR0Bw8QS9M9KVaAdNAAFoCEdAoOlnwuuie3V9lChoBkdAcGWTi83+/GgHTR8BaAhHQKDqbHYpUgl1fZQoaAZHQG+HPicXm/5oB00lAWgIR0Cg6nPMB6rvdX2UKGgGR0BuCFJUYKplaAdNaQFoCEdAoOq5QP7N0XV9lChoBkdAcdjj5bhWHWgHTY4BaAhHQKDqxo11nul1fZQoaAZHQHA/jVYp2EFoB01AAWgIR0Cg6tiJfpljdX2UKGgGR0BykYu27Wd3aAdNQgFoCEdAoOr9Ey+HrXV9lChoBkdAcxQwjt5UtWgHTZYBaAhHQKDrETHKfWd1fZQoaAZHQG5JZJbt7a9oB01oAWgIR0Cg602xptaZdX2UKGgGR0BxFuWt2cJ/aAdL7GgIR0Cg63FYuCf6dX2UKGgGR0Bw8FCXyAhCaAdNAwFoCEdAoOvOJm/WUnV9lChoBkdAcPVTER8MNWgHS/5oCEdAoOvmoWHk93V9lChoBkdAcrNpaRp1zWgHS/FoCEdAoOxBESdvsXV9lChoBkdAbeDSHdoFmmgHTRMBaAhHQKDsk7tAs051fZQoaAZHQFInPszEaVFoB0u+aAhHQKDs0MS9M9N1fZQoaAZHQG+Lg4wRGtpoB00hAWgIR0Cg7UCfQKKHdX2UKGgGR0AlIzByjpLVaAdLy2gIR0Cg7VyJ0nw5dX2UKGgGR0BwBOqIacZtaAdNWgFoCEdAoO2nm5lOGnV9lChoBkdASsyDsdDIBGgHS8NoCEdAoO3LWoWHlHV9lChoBkdAcKjBu4wyqWgHTQoBaAhHQKDt7hm5Dqp1fZQoaAZHQHCoyU1Q66toB00JAWgIR0Cg7jvN3W4FdX2UKGgGR0BPTloL5RCQaAdL2mgIR0Cg7kvJaJQ+dX2UKGgGR0BxkgzZYgaFaAdNDQFoCEdAoO6CGetjkXV9lChoBkdAcJ8cAiml7GgHTSoBaAhHQKDuoXwb2lF1fZQoaAZHQHO4zp5eJHloB01KAWgIR0Cg72MFUyYYdX2UKGgGR0BxTP7aZhKEaAdNJwFoCEdAoO/GHtWuHXV9lChoBkdAcKmpsXSBsmgHS99oCEdAoO/3rB0p3HV9lChoBkdAS1PqVyFPBWgHS8VoCEdAoPAPlGPPs3V9lChoBkdAcHcvKEFnqWgHTToBaAhHQKDwJkiD/VB1fZQoaAZHQHIzEZNwiq1oB00nAWgIR0Cg8E4uTRpldX2UKGgGR0BwVNpAUtZnaAdL82gIR0Cg8Ln8sMAndX2UKGgGR0ByLL+JgsshaAdNSAFoCEdAoPEVHavicXV9lChoBkdAcTTcy31BdGgHS/ZoCEdAoPFF/Ue+23V9lChoBkdAcIDp5u63AmgHTREBaAhHQKDxhs+mm+F1fZQoaAZHQG+8MwL3K0VoB00EAWgIR0Cg8gyXD3uedX2UKGgGR0BxiFJsfq5caAdNGgFoCEdAoPIUBp5/snV9lChoBkdAcKrVRk3CK2gHTUYBaAhHQKDyKTq0MPV1fZQoaAZHQG7EWaMJhORoB00jAWgIR0Cg8kDKYAsDdX2UKGgGR0BxVAEjgQ6IaAdNBwFoCEdAoPLwMlTm4nV9lChoBkdAUw+RGMGX5WgHS7hoCEdAoPM0l3QlbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQ1a11l9CwmZE0lq5aM+AFGYwDaW5jlIoR5/onQC0fdn0oHytuPjXHyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.95, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb449f2917b3cb23dcdd5d45daa86596f3e8b203816fff703d1fe525859b67e
|
3 |
+
size 148267
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79520937c0d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79520937c160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79520937c1f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79520937c280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79520937c310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79520937c3a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79520937c430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79520937c4c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79520937c550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79520937c5e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79520937c670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79520937c700>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x795209390040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": 12345,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1703117120404293993,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM3pT6f+Uk/9T3MvNV9x75JTXM+6j/tvQAAAAAAAAAAGi+pPa5BtLqTbgkz+aDyroLmLzrQsrezAACAPwAAAAAmPpU9habIuxLFOrzMaY483/EXPXrTcL0AAIA/AACAP819jbyuqZG6ynCfONHilTO9aLK65X+4twAAgD8AAIA/zX/2vA/1Xz5J2xg+doiQvlbdLz2pX5A9AAAAAAAAAACNvZO9HBkDvG1zK7yDEZU8PqZXPZP8eL0AAIA/AACAP8DRuz3hfIa6HRjgOilehzV8uWq683wCugAAgD8AAIA/mgXePFyfUbozJ823d2wtsmpAarsFKfA2AACAPwAAgD8wrlC+6ILdPUVRlz7EKoK+9ZSEPNYyGj0AAAAAAAAAAI1f7r1nqjU/EtC0vZeetL523ta9k+l+PAAAAAAAAAAADUPdvZc5uD/rQ7K+66ipvq5/470+biK+AAAAAAAAAADmUpG9tbRcPuS3FT7vGYa+DHftvI2P7jwAAAAAAAAAAE3JjT53a8I+zYkEvfx4k75MVxM+XfHhvQAAAAAAAAAAmlkWuzw/qD8uVc68MF4Qv/gmr7rSnuQ8AAAAAAAAAADm1729T1b2PkyQCL1GLqm+yFl/vZ3a6DwAAAAAAAAAABr9Fj490hi7ugEkuMm65zTvalK86kdCNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVIwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHXZwS8J2OMAWyUTQgBjAF0lEdAoM903CKrJnV9lChoBkdAcNe8RL9MsmgHS/JoCEdAoM+gcLjPwHV9lChoBkdAcFegTRIBimgHS/doCEdAoM/LMRpUP3V9lChoBkdAbeKsf7rLQ2gHTRwBaAhHQKDP/5dGAkN1fZQoaAZHQHEL1mBe5WloB00aAWgIR0Cg0APTw2ETdX2UKGgGR0BxgOSMcZLqaAdNEAFoCEdAoNARZ+x4ZHV9lChoBkdAce6cIJJGv2gHS/toCEdAoNAZdyDIzXV9lChoBkdAcs+mGM4tH2gHS/JoCEdAoNA9itq59XV9lChoBkdAcJq/4ZdfLWgHTSEBaAhHQKDQYwDeTFF1fZQoaAZHQFWzJzDGcWloB0vlaAhHQKDQkC9ytFN1fZQoaAZHQCWgjOcDr7hoB0u+aAhHQKDQt/Aj6ep1fZQoaAZHQHLDlwLmZE5oB007AWgIR0Cg0RpNTLntdX2UKGgGR0BvnHOv+wTuaAdNMAFoCEdAoNE7q6e5F3V9lChoBkdAcnxwgDA8CGgHTSQBaAhHQKDROhysCDF1fZQoaAZHQG8+9BKL879oB00NAWgIR0Cg0bJ0W/JvdX2UKGgGR0BMbyXUpd8iaAdLwmgIR0Cg0qKv/zasdX2UKGgGR0BwucID5j6OaAdL7GgIR0Cg0sYSg5BDdX2UKGgGR0Bw+IhA4XGfaAdNBwFoCEdAoNLZoXbdrXV9lChoBkdAcUDxKQJXyWgHS+VoCEdAoNL8c4o7WHV9lChoBkdAcHoA6Mir1mgHS9toCEdAoNMzxkNF0HV9lChoBkdAcyOIV/MGHGgHTRoBaAhHQKDTRFvQ4S91fZQoaAZHQD4uHpKSPlxoB0vTaAhHQKDTTmxt52R1fZQoaAZHQHAG01ZTyaxoB00JAWgIR0Cg02TKLbYcdX2UKGgGR0ByYqyY5T60aAdNHgFoCEdAoNOuGZeAu3V9lChoBkdAcukT+NtIkWgHTRMBaAhHQKDUtZrYXft1fZQoaAZHQEqJDlYEGJNoB0vBaAhHQKDUvvNu+AV1fZQoaAZHQHL3RWDHwPRoB0v6aAhHQKDU1U8V58l1fZQoaAZHQHAf86BAfMhoB00AAWgIR0Cg1QnRb8m8dX2UKGgGR0BxuFeF+NLlaAdNdgFoCEdAoNUyamXPaHV9lChoBkdAbzajps41g2gHTQ8BaAhHQKDVNrbg0j11fZQoaAZHQHCSGl67dzpoB0veaAhHQKDV8D+R5kd1fZQoaAZHQGgJ3ocJdB1oB03oA2gIR0Cg1iTz3AVPdX2UKGgGR0Bw5y6XjU/faAdNBwFoCEdAoNagppeu3nV9lChoBkdAb9sl3Qla82gHTQEBaAhHQKDWw65Gz8h1fZQoaAZHQHCPt3jdYXBoB00QAWgIR0Cg1txbSqlxdX2UKGgGR0Bwh9Sde6ZqaAdL8GgIR0Cg1vmOMl1KdX2UKGgGR0BzDc0IkZ75aAdNCgFoCEdAoNcn6AOJ+HV9lChoBkdAb5uWweNkv2gHTQsBaAhHQKDXO7V8Ti91fZQoaAZHQHGWs8s+V1RoB00tAWgIR0Cg17FUADJVdX2UKGgGR0Bu/f1xsEaEaAdNCQFoCEdAoNha2jO9nXV9lChoBkdAbmP2EkB0ZGgHTVUBaAhHQKDYrf3N9ph1fZQoaAZHQHEuk/wAlv9oB00pAWgIR0Cg2LhKcurZdX2UKGgGR0Bzl/n+yZ8baAdNLgFoCEdAoNkeFBY3enV9lChoBkdAb5/Zwn6VMWgHTTUBaAhHQKDZeUSqU/x1fZQoaAZHQHIteaOPvKFoB00HAWgIR0Cg2bYKIBRydX2UKGgGR0BxASoo/iYLaAdNAwFoCEdAoOWsbcXWOXV9lChoBkdASHg6p5u63GgHS9RoCEdAoOXF/z8P4HV9lChoBkdAcSfF0xM362gHS/VoCEdAoOYIqTbFj3V9lChoBkdAcwC3/Pw/gWgHTawBaAhHQKDmXINEw351fZQoaAZHQHFHXFglWwNoB00bAWgIR0Cg5mdX9zfadX2UKGgGR0BxY0sqaw2VaAdL+2gIR0Cg5mylFc6edX2UKGgGR0BwNbNqxkd4aAdL+mgIR0Cg5nreQ+2WdX2UKGgGR0ByyvwmVqveaAdNFgFoCEdAoOaCVSn+AHV9lChoBkdAb5ZH3lCCz2gHS+BoCEdAoOcm3hGYr3V9lChoBkdAbnxKxLTQV2gHTQoBaAhHQKDoDkCFK051fZQoaAZHQEtHGsmv4dpoB0vDaAhHQKDoKDtgKF91fZQoaAZHQHBJnUhFEzBoB00hAmgIR0Cg6FYt6HCXdX2UKGgGR0Bx6ZIsiB5HaAdNQgFoCEdAoOjbWd3B6HV9lChoBkdAcUsVvddmhGgHTZMBaAhHQKDo9IlMRHx1fZQoaAZHQHJiWN3np0RoB00tAWgIR0Cg6Pa86FM7dX2UKGgGR0Bw8QS9M9KVaAdNAAFoCEdAoOlnwuuie3V9lChoBkdAcGWTi83+/GgHTR8BaAhHQKDqbHYpUgl1fZQoaAZHQG+HPicXm/5oB00lAWgIR0Cg6nPMB6rvdX2UKGgGR0BuCFJUYKplaAdNaQFoCEdAoOq5QP7N0XV9lChoBkdAcdjj5bhWHWgHTY4BaAhHQKDqxo11nul1fZQoaAZHQHA/jVYp2EFoB01AAWgIR0Cg6tiJfpljdX2UKGgGR0BykYu27Wd3aAdNQgFoCEdAoOr9Ey+HrXV9lChoBkdAcxQwjt5UtWgHTZYBaAhHQKDrETHKfWd1fZQoaAZHQG5JZJbt7a9oB01oAWgIR0Cg602xptaZdX2UKGgGR0BxFuWt2cJ/aAdL7GgIR0Cg63FYuCf6dX2UKGgGR0Bw8FCXyAhCaAdNAwFoCEdAoOvOJm/WUnV9lChoBkdAcPVTER8MNWgHS/5oCEdAoOvmoWHk93V9lChoBkdAcrNpaRp1zWgHS/FoCEdAoOxBESdvsXV9lChoBkdAbeDSHdoFmmgHTRMBaAhHQKDsk7tAs051fZQoaAZHQFInPszEaVFoB0u+aAhHQKDs0MS9M9N1fZQoaAZHQG+Lg4wRGtpoB00hAWgIR0Cg7UCfQKKHdX2UKGgGR0AlIzByjpLVaAdLy2gIR0Cg7VyJ0nw5dX2UKGgGR0BwBOqIacZtaAdNWgFoCEdAoO2nm5lOGnV9lChoBkdASsyDsdDIBGgHS8NoCEdAoO3LWoWHlHV9lChoBkdAcKjBu4wyqWgHTQoBaAhHQKDt7hm5Dqp1fZQoaAZHQHCoyU1Q66toB00JAWgIR0Cg7jvN3W4FdX2UKGgGR0BPTloL5RCQaAdL2mgIR0Cg7kvJaJQ+dX2UKGgGR0BxkgzZYgaFaAdNDQFoCEdAoO6CGetjkXV9lChoBkdAcJ8cAiml7GgHTSoBaAhHQKDuoXwb2lF1fZQoaAZHQHO4zp5eJHloB01KAWgIR0Cg72MFUyYYdX2UKGgGR0BxTP7aZhKEaAdNJwFoCEdAoO/GHtWuHXV9lChoBkdAcKmpsXSBsmgHS99oCEdAoO/3rB0p3HV9lChoBkdAS1PqVyFPBWgHS8VoCEdAoPAPlGPPs3V9lChoBkdAcHcvKEFnqWgHTToBaAhHQKDwJkiD/VB1fZQoaAZHQHIzEZNwiq1oB00nAWgIR0Cg8E4uTRpldX2UKGgGR0BwVNpAUtZnaAdL82gIR0Cg8Ln8sMAndX2UKGgGR0ByLL+JgsshaAdNSAFoCEdAoPEVHavicXV9lChoBkdAcTTcy31BdGgHS/ZoCEdAoPFF/Ue+23V9lChoBkdAcIDp5u63AmgHTREBaAhHQKDxhs+mm+F1fZQoaAZHQG+8MwL3K0VoB00EAWgIR0Cg8gyXD3uedX2UKGgGR0BxiFJsfq5caAdNGgFoCEdAoPIUBp5/snV9lChoBkdAcKrVRk3CK2gHTUYBaAhHQKDyKTq0MPV1fZQoaAZHQG7EWaMJhORoB00jAWgIR0Cg8kDKYAsDdX2UKGgGR0BxVAEjgQ6IaAdNBwFoCEdAoPLwMlTm4nV9lChoBkdAUw+RGMGX5WgHS7hoCEdAoPM0l3QlbHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQ1a11l9CwmZE0lq5aM+AFGYwDaW5jlIoR5/onQC0fdn0oHytuPjXHyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.998,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.02,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 5,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f14482c4dd895f3ebb936739de5658b602d2c204e27994956eb2473304cc93e8
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32babe17d6e756f4c84c868fcafaba4083babd8f4f1fbc95478915cd6d0018f2
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (156 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 261.252938, "std_reward": 16.687271616595233, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-21T00:39:02.379482"}
|