c-wang commited on
Commit
c1adff1
·
1 Parent(s): a87abce

My first commit to the Hub

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.25 +/- 16.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79520937c0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79520937c160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79520937c1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79520937c280>", "_build": "<function ActorCriticPolicy._build at 0x79520937c310>", "forward": "<function ActorCriticPolicy.forward at 0x79520937c3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79520937c430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79520937c4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x79520937c550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79520937c5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79520937c670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79520937c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x795209390040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 12345, "action_noise": null, "start_time": 1703117120404293993, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM3pT6f+Uk/9T3MvNV9x75JTXM+6j/tvQAAAAAAAAAAGi+pPa5BtLqTbgkz+aDyroLmLzrQsrezAACAPwAAAAAmPpU9habIuxLFOrzMaY483/EXPXrTcL0AAIA/AACAP819jbyuqZG6ynCfONHilTO9aLK65X+4twAAgD8AAIA/zX/2vA/1Xz5J2xg+doiQvlbdLz2pX5A9AAAAAAAAAACNvZO9HBkDvG1zK7yDEZU8PqZXPZP8eL0AAIA/AACAP8DRuz3hfIa6HRjgOilehzV8uWq683wCugAAgD8AAIA/mgXePFyfUbozJ823d2wtsmpAarsFKfA2AACAPwAAgD8wrlC+6ILdPUVRlz7EKoK+9ZSEPNYyGj0AAAAAAAAAAI1f7r1nqjU/EtC0vZeetL523ta9k+l+PAAAAAAAAAAADUPdvZc5uD/rQ7K+66ipvq5/470+biK+AAAAAAAAAADmUpG9tbRcPuS3FT7vGYa+DHftvI2P7jwAAAAAAAAAAE3JjT53a8I+zYkEvfx4k75MVxM+XfHhvQAAAAAAAAAAmlkWuzw/qD8uVc68MF4Qv/gmr7rSnuQ8AAAAAAAAAADm1729T1b2PkyQCL1GLqm+yFl/vZ3a6DwAAAAAAAAAABr9Fj490hi7ugEkuMm65zTvalK86kdCNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHXZwS8J2OMAWyUTQgBjAF0lEdAoM903CKrJnV9lChoBkdAcNe8RL9MsmgHS/JoCEdAoM+gcLjPwHV9lChoBkdAcFegTRIBimgHS/doCEdAoM/LMRpUP3V9lChoBkdAbeKsf7rLQ2gHTRwBaAhHQKDP/5dGAkN1fZQoaAZHQHEL1mBe5WloB00aAWgIR0Cg0APTw2ETdX2UKGgGR0BxgOSMcZLqaAdNEAFoCEdAoNARZ+x4ZHV9lChoBkdAce6cIJJGv2gHS/toCEdAoNAZdyDIzXV9lChoBkdAcs+mGM4tH2gHS/JoCEdAoNA9itq59XV9lChoBkdAcJq/4ZdfLWgHTSEBaAhHQKDQYwDeTFF1fZQoaAZHQFWzJzDGcWloB0vlaAhHQKDQkC9ytFN1fZQoaAZHQCWgjOcDr7hoB0u+aAhHQKDQt/Aj6ep1fZQoaAZHQHLDlwLmZE5oB007AWgIR0Cg0RpNTLntdX2UKGgGR0BvnHOv+wTuaAdNMAFoCEdAoNE7q6e5F3V9lChoBkdAcnxwgDA8CGgHTSQBaAhHQKDROhysCDF1fZQoaAZHQG8+9BKL879oB00NAWgIR0Cg0bJ0W/JvdX2UKGgGR0BMbyXUpd8iaAdLwmgIR0Cg0qKv/zasdX2UKGgGR0BwucID5j6OaAdL7GgIR0Cg0sYSg5BDdX2UKGgGR0Bw+IhA4XGfaAdNBwFoCEdAoNLZoXbdrXV9lChoBkdAcUDxKQJXyWgHS+VoCEdAoNL8c4o7WHV9lChoBkdAcHoA6Mir1mgHS9toCEdAoNMzxkNF0HV9lChoBkdAcyOIV/MGHGgHTRoBaAhHQKDTRFvQ4S91fZQoaAZHQD4uHpKSPlxoB0vTaAhHQKDTTmxt52R1fZQoaAZHQHAG01ZTyaxoB00JAWgIR0Cg02TKLbYcdX2UKGgGR0ByYqyY5T60aAdNHgFoCEdAoNOuGZeAu3V9lChoBkdAcukT+NtIkWgHTRMBaAhHQKDUtZrYXft1fZQoaAZHQEqJDlYEGJNoB0vBaAhHQKDUvvNu+AV1fZQoaAZHQHL3RWDHwPRoB0v6aAhHQKDU1U8V58l1fZQoaAZHQHAf86BAfMhoB00AAWgIR0Cg1QnRb8m8dX2UKGgGR0BxuFeF+NLlaAdNdgFoCEdAoNUyamXPaHV9lChoBkdAbzajps41g2gHTQ8BaAhHQKDVNrbg0j11fZQoaAZHQHCSGl67dzpoB0veaAhHQKDV8D+R5kd1fZQoaAZHQGgJ3ocJdB1oB03oA2gIR0Cg1iTz3AVPdX2UKGgGR0Bw5y6XjU/faAdNBwFoCEdAoNagppeu3nV9lChoBkdAb9sl3Qla82gHTQEBaAhHQKDWw65Gz8h1fZQoaAZHQHCPt3jdYXBoB00QAWgIR0Cg1txbSqlxdX2UKGgGR0Bwh9Sde6ZqaAdL8GgIR0Cg1vmOMl1KdX2UKGgGR0BzDc0IkZ75aAdNCgFoCEdAoNcn6AOJ+HV9lChoBkdAb5uWweNkv2gHTQsBaAhHQKDXO7V8Ti91fZQoaAZHQHGWs8s+V1RoB00tAWgIR0Cg17FUADJVdX2UKGgGR0Bu/f1xsEaEaAdNCQFoCEdAoNha2jO9nXV9lChoBkdAbmP2EkB0ZGgHTVUBaAhHQKDYrf3N9ph1fZQoaAZHQHEuk/wAlv9oB00pAWgIR0Cg2LhKcurZdX2UKGgGR0Bzl/n+yZ8baAdNLgFoCEdAoNkeFBY3enV9lChoBkdAb5/Zwn6VMWgHTTUBaAhHQKDZeUSqU/x1fZQoaAZHQHIteaOPvKFoB00HAWgIR0Cg2bYKIBRydX2UKGgGR0BxASoo/iYLaAdNAwFoCEdAoOWsbcXWOXV9lChoBkdASHg6p5u63GgHS9RoCEdAoOXF/z8P4HV9lChoBkdAcSfF0xM362gHS/VoCEdAoOYIqTbFj3V9lChoBkdAcwC3/Pw/gWgHTawBaAhHQKDmXINEw351fZQoaAZHQHFHXFglWwNoB00bAWgIR0Cg5mdX9zfadX2UKGgGR0BxY0sqaw2VaAdL+2gIR0Cg5mylFc6edX2UKGgGR0BwNbNqxkd4aAdL+mgIR0Cg5nreQ+2WdX2UKGgGR0ByyvwmVqveaAdNFgFoCEdAoOaCVSn+AHV9lChoBkdAb5ZH3lCCz2gHS+BoCEdAoOcm3hGYr3V9lChoBkdAbnxKxLTQV2gHTQoBaAhHQKDoDkCFK051fZQoaAZHQEtHGsmv4dpoB0vDaAhHQKDoKDtgKF91fZQoaAZHQHBJnUhFEzBoB00hAmgIR0Cg6FYt6HCXdX2UKGgGR0Bx6ZIsiB5HaAdNQgFoCEdAoOjbWd3B6HV9lChoBkdAcUsVvddmhGgHTZMBaAhHQKDo9IlMRHx1fZQoaAZHQHJiWN3np0RoB00tAWgIR0Cg6Pa86FM7dX2UKGgGR0Bw8QS9M9KVaAdNAAFoCEdAoOlnwuuie3V9lChoBkdAcGWTi83+/GgHTR8BaAhHQKDqbHYpUgl1fZQoaAZHQG+HPicXm/5oB00lAWgIR0Cg6nPMB6rvdX2UKGgGR0BuCFJUYKplaAdNaQFoCEdAoOq5QP7N0XV9lChoBkdAcdjj5bhWHWgHTY4BaAhHQKDqxo11nul1fZQoaAZHQHA/jVYp2EFoB01AAWgIR0Cg6tiJfpljdX2UKGgGR0BykYu27Wd3aAdNQgFoCEdAoOr9Ey+HrXV9lChoBkdAcxQwjt5UtWgHTZYBaAhHQKDrETHKfWd1fZQoaAZHQG5JZJbt7a9oB01oAWgIR0Cg602xptaZdX2UKGgGR0BxFuWt2cJ/aAdL7GgIR0Cg63FYuCf6dX2UKGgGR0Bw8FCXyAhCaAdNAwFoCEdAoOvOJm/WUnV9lChoBkdAcPVTER8MNWgHS/5oCEdAoOvmoWHk93V9lChoBkdAcrNpaRp1zWgHS/FoCEdAoOxBESdvsXV9lChoBkdAbeDSHdoFmmgHTRMBaAhHQKDsk7tAs051fZQoaAZHQFInPszEaVFoB0u+aAhHQKDs0MS9M9N1fZQoaAZHQG+Lg4wRGtpoB00hAWgIR0Cg7UCfQKKHdX2UKGgGR0AlIzByjpLVaAdLy2gIR0Cg7VyJ0nw5dX2UKGgGR0BwBOqIacZtaAdNWgFoCEdAoO2nm5lOGnV9lChoBkdASsyDsdDIBGgHS8NoCEdAoO3LWoWHlHV9lChoBkdAcKjBu4wyqWgHTQoBaAhHQKDt7hm5Dqp1fZQoaAZHQHCoyU1Q66toB00JAWgIR0Cg7jvN3W4FdX2UKGgGR0BPTloL5RCQaAdL2mgIR0Cg7kvJaJQ+dX2UKGgGR0BxkgzZYgaFaAdNDQFoCEdAoO6CGetjkXV9lChoBkdAcJ8cAiml7GgHTSoBaAhHQKDuoXwb2lF1fZQoaAZHQHO4zp5eJHloB01KAWgIR0Cg72MFUyYYdX2UKGgGR0BxTP7aZhKEaAdNJwFoCEdAoO/GHtWuHXV9lChoBkdAcKmpsXSBsmgHS99oCEdAoO/3rB0p3HV9lChoBkdAS1PqVyFPBWgHS8VoCEdAoPAPlGPPs3V9lChoBkdAcHcvKEFnqWgHTToBaAhHQKDwJkiD/VB1fZQoaAZHQHIzEZNwiq1oB00nAWgIR0Cg8E4uTRpldX2UKGgGR0BwVNpAUtZnaAdL82gIR0Cg8Ln8sMAndX2UKGgGR0ByLL+JgsshaAdNSAFoCEdAoPEVHavicXV9lChoBkdAcTTcy31BdGgHS/ZoCEdAoPFF/Ue+23V9lChoBkdAcIDp5u63AmgHTREBaAhHQKDxhs+mm+F1fZQoaAZHQG+8MwL3K0VoB00EAWgIR0Cg8gyXD3uedX2UKGgGR0BxiFJsfq5caAdNGgFoCEdAoPIUBp5/snV9lChoBkdAcKrVRk3CK2gHTUYBaAhHQKDyKTq0MPV1fZQoaAZHQG7EWaMJhORoB00jAWgIR0Cg8kDKYAsDdX2UKGgGR0BxVAEjgQ6IaAdNBwFoCEdAoPLwMlTm4nV9lChoBkdAUw+RGMGX5WgHS7hoCEdAoPM0l3QlbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQ1a11l9CwmZE0lq5aM+AFGYwDaW5jlIoR5/onQC0fdn0oHytuPjXHyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.95, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bb449f2917b3cb23dcdd5d45daa86596f3e8b203816fff703d1fe525859b67e
3
+ size 148267
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79520937c0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79520937c160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79520937c1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79520937c280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79520937c310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79520937c3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79520937c430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79520937c4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79520937c550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79520937c5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79520937c670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79520937c700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x795209390040>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 12345,
28
+ "action_noise": null,
29
+ "start_time": 1703117120404293993,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM3pT6f+Uk/9T3MvNV9x75JTXM+6j/tvQAAAAAAAAAAGi+pPa5BtLqTbgkz+aDyroLmLzrQsrezAACAPwAAAAAmPpU9habIuxLFOrzMaY483/EXPXrTcL0AAIA/AACAP819jbyuqZG6ynCfONHilTO9aLK65X+4twAAgD8AAIA/zX/2vA/1Xz5J2xg+doiQvlbdLz2pX5A9AAAAAAAAAACNvZO9HBkDvG1zK7yDEZU8PqZXPZP8eL0AAIA/AACAP8DRuz3hfIa6HRjgOilehzV8uWq683wCugAAgD8AAIA/mgXePFyfUbozJ823d2wtsmpAarsFKfA2AACAPwAAgD8wrlC+6ILdPUVRlz7EKoK+9ZSEPNYyGj0AAAAAAAAAAI1f7r1nqjU/EtC0vZeetL523ta9k+l+PAAAAAAAAAAADUPdvZc5uD/rQ7K+66ipvq5/470+biK+AAAAAAAAAADmUpG9tbRcPuS3FT7vGYa+DHftvI2P7jwAAAAAAAAAAE3JjT53a8I+zYkEvfx4k75MVxM+XfHhvQAAAAAAAAAAmlkWuzw/qD8uVc68MF4Qv/gmr7rSnuQ8AAAAAAAAAADm1729T1b2PkyQCL1GLqm+yFl/vZ3a6DwAAAAAAAAAABr9Fj490hi7ugEkuMm65zTvalK86kdCNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVIwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHXZwS8J2OMAWyUTQgBjAF0lEdAoM903CKrJnV9lChoBkdAcNe8RL9MsmgHS/JoCEdAoM+gcLjPwHV9lChoBkdAcFegTRIBimgHS/doCEdAoM/LMRpUP3V9lChoBkdAbeKsf7rLQ2gHTRwBaAhHQKDP/5dGAkN1fZQoaAZHQHEL1mBe5WloB00aAWgIR0Cg0APTw2ETdX2UKGgGR0BxgOSMcZLqaAdNEAFoCEdAoNARZ+x4ZHV9lChoBkdAce6cIJJGv2gHS/toCEdAoNAZdyDIzXV9lChoBkdAcs+mGM4tH2gHS/JoCEdAoNA9itq59XV9lChoBkdAcJq/4ZdfLWgHTSEBaAhHQKDQYwDeTFF1fZQoaAZHQFWzJzDGcWloB0vlaAhHQKDQkC9ytFN1fZQoaAZHQCWgjOcDr7hoB0u+aAhHQKDQt/Aj6ep1fZQoaAZHQHLDlwLmZE5oB007AWgIR0Cg0RpNTLntdX2UKGgGR0BvnHOv+wTuaAdNMAFoCEdAoNE7q6e5F3V9lChoBkdAcnxwgDA8CGgHTSQBaAhHQKDROhysCDF1fZQoaAZHQG8+9BKL879oB00NAWgIR0Cg0bJ0W/JvdX2UKGgGR0BMbyXUpd8iaAdLwmgIR0Cg0qKv/zasdX2UKGgGR0BwucID5j6OaAdL7GgIR0Cg0sYSg5BDdX2UKGgGR0Bw+IhA4XGfaAdNBwFoCEdAoNLZoXbdrXV9lChoBkdAcUDxKQJXyWgHS+VoCEdAoNL8c4o7WHV9lChoBkdAcHoA6Mir1mgHS9toCEdAoNMzxkNF0HV9lChoBkdAcyOIV/MGHGgHTRoBaAhHQKDTRFvQ4S91fZQoaAZHQD4uHpKSPlxoB0vTaAhHQKDTTmxt52R1fZQoaAZHQHAG01ZTyaxoB00JAWgIR0Cg02TKLbYcdX2UKGgGR0ByYqyY5T60aAdNHgFoCEdAoNOuGZeAu3V9lChoBkdAcukT+NtIkWgHTRMBaAhHQKDUtZrYXft1fZQoaAZHQEqJDlYEGJNoB0vBaAhHQKDUvvNu+AV1fZQoaAZHQHL3RWDHwPRoB0v6aAhHQKDU1U8V58l1fZQoaAZHQHAf86BAfMhoB00AAWgIR0Cg1QnRb8m8dX2UKGgGR0BxuFeF+NLlaAdNdgFoCEdAoNUyamXPaHV9lChoBkdAbzajps41g2gHTQ8BaAhHQKDVNrbg0j11fZQoaAZHQHCSGl67dzpoB0veaAhHQKDV8D+R5kd1fZQoaAZHQGgJ3ocJdB1oB03oA2gIR0Cg1iTz3AVPdX2UKGgGR0Bw5y6XjU/faAdNBwFoCEdAoNagppeu3nV9lChoBkdAb9sl3Qla82gHTQEBaAhHQKDWw65Gz8h1fZQoaAZHQHCPt3jdYXBoB00QAWgIR0Cg1txbSqlxdX2UKGgGR0Bwh9Sde6ZqaAdL8GgIR0Cg1vmOMl1KdX2UKGgGR0BzDc0IkZ75aAdNCgFoCEdAoNcn6AOJ+HV9lChoBkdAb5uWweNkv2gHTQsBaAhHQKDXO7V8Ti91fZQoaAZHQHGWs8s+V1RoB00tAWgIR0Cg17FUADJVdX2UKGgGR0Bu/f1xsEaEaAdNCQFoCEdAoNha2jO9nXV9lChoBkdAbmP2EkB0ZGgHTVUBaAhHQKDYrf3N9ph1fZQoaAZHQHEuk/wAlv9oB00pAWgIR0Cg2LhKcurZdX2UKGgGR0Bzl/n+yZ8baAdNLgFoCEdAoNkeFBY3enV9lChoBkdAb5/Zwn6VMWgHTTUBaAhHQKDZeUSqU/x1fZQoaAZHQHIteaOPvKFoB00HAWgIR0Cg2bYKIBRydX2UKGgGR0BxASoo/iYLaAdNAwFoCEdAoOWsbcXWOXV9lChoBkdASHg6p5u63GgHS9RoCEdAoOXF/z8P4HV9lChoBkdAcSfF0xM362gHS/VoCEdAoOYIqTbFj3V9lChoBkdAcwC3/Pw/gWgHTawBaAhHQKDmXINEw351fZQoaAZHQHFHXFglWwNoB00bAWgIR0Cg5mdX9zfadX2UKGgGR0BxY0sqaw2VaAdL+2gIR0Cg5mylFc6edX2UKGgGR0BwNbNqxkd4aAdL+mgIR0Cg5nreQ+2WdX2UKGgGR0ByyvwmVqveaAdNFgFoCEdAoOaCVSn+AHV9lChoBkdAb5ZH3lCCz2gHS+BoCEdAoOcm3hGYr3V9lChoBkdAbnxKxLTQV2gHTQoBaAhHQKDoDkCFK051fZQoaAZHQEtHGsmv4dpoB0vDaAhHQKDoKDtgKF91fZQoaAZHQHBJnUhFEzBoB00hAmgIR0Cg6FYt6HCXdX2UKGgGR0Bx6ZIsiB5HaAdNQgFoCEdAoOjbWd3B6HV9lChoBkdAcUsVvddmhGgHTZMBaAhHQKDo9IlMRHx1fZQoaAZHQHJiWN3np0RoB00tAWgIR0Cg6Pa86FM7dX2UKGgGR0Bw8QS9M9KVaAdNAAFoCEdAoOlnwuuie3V9lChoBkdAcGWTi83+/GgHTR8BaAhHQKDqbHYpUgl1fZQoaAZHQG+HPicXm/5oB00lAWgIR0Cg6nPMB6rvdX2UKGgGR0BuCFJUYKplaAdNaQFoCEdAoOq5QP7N0XV9lChoBkdAcdjj5bhWHWgHTY4BaAhHQKDqxo11nul1fZQoaAZHQHA/jVYp2EFoB01AAWgIR0Cg6tiJfpljdX2UKGgGR0BykYu27Wd3aAdNQgFoCEdAoOr9Ey+HrXV9lChoBkdAcxQwjt5UtWgHTZYBaAhHQKDrETHKfWd1fZQoaAZHQG5JZJbt7a9oB01oAWgIR0Cg602xptaZdX2UKGgGR0BxFuWt2cJ/aAdL7GgIR0Cg63FYuCf6dX2UKGgGR0Bw8FCXyAhCaAdNAwFoCEdAoOvOJm/WUnV9lChoBkdAcPVTER8MNWgHS/5oCEdAoOvmoWHk93V9lChoBkdAcrNpaRp1zWgHS/FoCEdAoOxBESdvsXV9lChoBkdAbeDSHdoFmmgHTRMBaAhHQKDsk7tAs051fZQoaAZHQFInPszEaVFoB0u+aAhHQKDs0MS9M9N1fZQoaAZHQG+Lg4wRGtpoB00hAWgIR0Cg7UCfQKKHdX2UKGgGR0AlIzByjpLVaAdLy2gIR0Cg7VyJ0nw5dX2UKGgGR0BwBOqIacZtaAdNWgFoCEdAoO2nm5lOGnV9lChoBkdASsyDsdDIBGgHS8NoCEdAoO3LWoWHlHV9lChoBkdAcKjBu4wyqWgHTQoBaAhHQKDt7hm5Dqp1fZQoaAZHQHCoyU1Q66toB00JAWgIR0Cg7jvN3W4FdX2UKGgGR0BPTloL5RCQaAdL2mgIR0Cg7kvJaJQ+dX2UKGgGR0BxkgzZYgaFaAdNDQFoCEdAoO6CGetjkXV9lChoBkdAcJ8cAiml7GgHTSoBaAhHQKDuoXwb2lF1fZQoaAZHQHO4zp5eJHloB01KAWgIR0Cg72MFUyYYdX2UKGgGR0BxTP7aZhKEaAdNJwFoCEdAoO/GHtWuHXV9lChoBkdAcKmpsXSBsmgHS99oCEdAoO/3rB0p3HV9lChoBkdAS1PqVyFPBWgHS8VoCEdAoPAPlGPPs3V9lChoBkdAcHcvKEFnqWgHTToBaAhHQKDwJkiD/VB1fZQoaAZHQHIzEZNwiq1oB00nAWgIR0Cg8E4uTRpldX2UKGgGR0BwVNpAUtZnaAdL82gIR0Cg8Ln8sMAndX2UKGgGR0ByLL+JgsshaAdNSAFoCEdAoPEVHavicXV9lChoBkdAcTTcy31BdGgHS/ZoCEdAoPFF/Ue+23V9lChoBkdAcIDp5u63AmgHTREBaAhHQKDxhs+mm+F1fZQoaAZHQG+8MwL3K0VoB00EAWgIR0Cg8gyXD3uedX2UKGgGR0BxiFJsfq5caAdNGgFoCEdAoPIUBp5/snV9lChoBkdAcKrVRk3CK2gHTUYBaAhHQKDyKTq0MPV1fZQoaAZHQG7EWaMJhORoB00jAWgIR0Cg8kDKYAsDdX2UKGgGR0BxVAEjgQ6IaAdNBwFoCEdAoPLwMlTm4nV9lChoBkdAUw+RGMGX5WgHS7hoCEdAoPM0l3QlbHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQ1a11l9CwmZE0lq5aM+AFGYwDaW5jlIoR5/onQC0fdn0oHytuPjXHyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.998,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.02,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 5,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f14482c4dd895f3ebb936739de5658b602d2c204e27994956eb2473304cc93e8
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32babe17d6e756f4c84c868fcafaba4083babd8f4f1fbc95478915cd6d0018f2
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (156 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.252938, "std_reward": 16.687271616595233, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-21T00:39:02.379482"}