Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1270.18 +/- 150.90
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b91b269877665b21e78155ec16a787036a926c8ceb9fd240314a2877967254a
|
3 |
+
size 129346
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ca0bd4ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ca0bd4d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ca0bd4dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ca0bd4e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6ca0bd4ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6ca0bd4f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6ca0bda040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ca0bda0d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6ca0bda160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ca0bda1f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ca0bda280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ca0bda310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f6ca0bccfc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680581868518317749,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": "./tensorboard",
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOaS0z+0l+E/zlJIv2Exvz2WNQZAv/Zlv7OSGkDh9Sw+SthBP0y/hLwiani+BhkeQDsvJj+fpRDAj1oYwNPukb9Mhtc+rjiLv05dHT96qug8dF1FP2L2+72zG3C/jr5YwH1gmr/RYBXAVEgCP0p+hr+CA3Y+ptSXPw6fBj6zAag/bIPYvSLJCr/Eo+s+fV89v6DWQz8AqW9A+D5tP7Uklb+/Y4W+rSPXPzniwDxZPmw/05pKveCJRD9kxD0/jET4PypiSL4053s/5U5Ev16keT98QlQ/2FzbPlRIAj9Kfoa/Rbu0vm55Sr9ptIU+GugHPx6FzD+Dcwc/b+ksPbubc7+LYtE+qPsSP6426T6x+QQ/dC6Sv+RZ0L96nsg+GFZlvzNf+T4HRIC/ouAlP/q8sT9Nqsq+YXEkv0cBZL8orJk9fEJUP9FgFcBUSAI/Sn6Gv66CFr9MTgdA4JgZwBCRUr9FBD5A/wwFv9HX+TwfLc0/2q0QPUxynL9E542/QM74u1Bl6z+e09C5cGCMv/TK+L0hvlO/gP9+Pyu5g7+dpiK/gdekP/lSiL/Zf22/3OKwvH1gmr/YXNs+VEgCP+6jcz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB9KqW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlnJ2vQAAAACIkvm/AAAAAOJSK70AAAAAtin7PwAAAADQoPO9AAAAADtR8j8AAAAAMnjVPQAAAADsctu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkiXMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMVAq70AAAAAdP/8vwAAAABRja27AAAAAOe73j8AAAAA7ObXPQAAAACFA/4/AAAAAOeSpb0AAAAArCztvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+7UzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/1Qy+AAAAAH8R7r8AAAAAsVoIvQAAAAAX3fo/AAAAAOQOHb0AAAAAZEP2PwAAAABUbhs9AAAAAJ4l9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaoY22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADQRkPQAAAADxKgDAAAAAAHF8rr0AAAAA577jPwAAAABDdwC+AAAAAEUTAEAAAAAArhG3vQAAAAAv/eG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJr9jSofjjuMAWyUTegDjAF0lEdAoGU13IMjNnV9lChoBkdAl87TdDYywmgHTegDaAhHQKBoQIF/x2B1fZQoaAZHQJGUUIiTt9hoB03oA2gIR0CgaXf1YhdMdX2UKGgGR0CTQqQNkOI7aAdN6ANoCEdAoGsx/EwWWXV9lChoBkdAleCeXiR4hWgHTegDaAhHQKBt46mO2iN1fZQoaAZHQJz1y1rqMWJoB03oA2gIR0CgcOmJN0vHdX2UKGgGR0CQL1K5CngpaAdN6ANoCEdAoHIhjBl+VnV9lChoBkdAmd+ScPOIImgHTegDaAhHQKBz2YJE6T51fZQoaAZHQJaDPviLl3hoB03oA2gIR0CgdoioS+QEdX2UKGgGR0CTbRioKlYVaAdN6ANoCEdAoHmDp3X7L3V9lChoBkdAnau9foicG2gHTegDaAhHQKB6uID5j6N1fZQoaAZHQI1lYlhPTG5oB03oA2gIR0CgfHAWrOqvdX2UKGgGR0CPdapo9LYgaAdN6ANoCEdAoH8ZUrCm/HV9lChoBkdAnA6stsenymgHTegDaAhHQKCCFF2mpER1fZQoaAZHQJz8lcB2fTVoB03oA2gIR0Cgg0e2d/aydX2UKGgGR0Cbby6jnFHbaAdN6ANoCEdAoIT/3ta6jHV9lChoBkdAm+c64+bExmgHTegDaAhHQKCHsSFoL5R1fZQoaAZHQJx6HgQ6IWRoB03oA2gIR0CgirCEpRXPdX2UKGgGR0CdT6MAWBSUaAdN6ANoCEdAoIvnAGjbjHV9lChoBkdAmb0Q0j1PFmgHTegDaAhHQKCNoCJ40Mx1fZQoaAZHQJjpb/NqxkdoB03oA2gIR0CgkE86vJRwdX2UKGgGR0CeRBRISUTtaAdN6ANoCEdAoJNNbLU1AXV9lChoBkdAnuwWBSUC72gHTegDaAhHQKCUgcZLqUx1fZQoaAZHQJ7CmCJ40MxoB03oA2gIR0CgljlBIFvAdX2UKGgGR0CbPcVbA1vVaAdN6ANoCEdAoJjnnfVI7XV9lChoBkdAh7XntWuHOGgHTegDaAhHQKCb65R0lqt1fZQoaAZHQJl5OF23azxoB03oA2gIR0CgnR+mWMS9dX2UKGgGR0Cfxq1UlzEKaAdN6ANoCEdAoJ7Z42S+xnV9lChoBkdAnuzrhNucc2gHTegDaAhHQKChhBwdbPh1fZQoaAZHQJ+Fhm6GxlhoB03oA2gIR0CgpH8pkPMCdX2UKGgGR0CcqWZwn6VMaAdN6ANoCEdAoKWxiI+GGnV9lChoBkdAoJAuUt7KJWgHTegDaAhHQKCnZv7WNFV1fZQoaAZHQJ5W/ZK3/gloB03oA2gIR0Cgqg6ClJpWdX2UKGgGR0CgBOC0OVgQaAdN6ANoCEdAoK0LkZJkG3V9lChoBkdAm0cCMPz4DmgHTegDaAhHQKCuQc1fmcR1fZQoaAZHQJq2dvVEuxtoB03oA2gIR0Cgr/uK4x1xdX2UKGgGR0Cdk9gjyFwlaAdN6ANoCEdAoLKsxh2GI3V9lChoBkdAkWsC/9Hc12gHTW0CaAhHQKC1Wc+aBqd1fZQoaAZHQJ1hVrSE12toB03oA2gIR0Cgta4t6HCXdX2UKGgGR0CZI1huO0b+aAdN6ANoCEdAoLbkU0vXb3V9lChoBkdAmz9zUutfX2gHTegDaAhHQKC7R8vVVgh1fZQoaAZHQJjSpGMGX5ZoB03oA2gIR0CgvfKZDzAfdX2UKGgGR0CYYpQ8OkLyaAdN6ANoCEdAoL5GxMWXTnV9lChoBkdAnN2XaakRBmgHTegDaAhHQKC/eVQhwER1fZQoaAZHQJh+N6NVBD5oB03oA2gIR0Cgw94hEBsAdX2UKGgGR0CWuRzVtoBaaAdN6ANoCEdAoMaFrRBu43V9lChoBkdAmYPdL127nWgHTegDaAhHQKDG2zposZp1fZQoaAZHQJiy2CcwxnFoB03oA2gIR0CgyA6GHpKSdX2UKGgGR0CTjp52Qnx8aAdN6ANoCEdAoMxymoBJZnV9lChoBkdAlWBoSUTtcGgHTegDaAhHQKDPHiwSrYJ1fZQoaAZHQJgnB4D9wWFoB03oA2gIR0Cgz3Iq0+khdX2UKGgGR0CX7mUwSJ0oaAdN6ANoCEdAoNCkFjd56nV9lChoBkdAl8CP60pmVmgHTegDaAhHQKDVCTzundh1fZQoaAZHQJQa3MB6rvNoB03oA2gIR0Cg17fXPJJYdX2UKGgGR0CQ52veP7vYaAdN6ANoCEdAoNgNYW+GoXV9lChoBkdAkLdcfvF3p2gHTegDaAhHQKDZQ/9pAUt1fZQoaAZHQJio0iKR+0BoB03oA2gIR0Cg3aVj7Q9idX2UKGgGR0CZ3J0nw5NoaAdN6ANoCEdAoOBM384xUXV9lChoBkdAl3FUYGdI5GgHTegDaAhHQKDgocoYvWZ1fZQoaAZHQJocpSjxkNFoB03oA2gIR0Cg4doJRfnfdX2UKGgGR0CQJY7F85S4aAdN6ANoCEdAoOZUwWWQfnV9lChoBkdAniBqbSZ0CGgHTegDaAhHQKDpB5kbxVh1fZQoaAZHQIIp93ljmS1oB03oA2gIR0Cg6V43m3fAdX2UKGgGR0CT0wQtz0YkaAdN6ANoCEdAoOqUKVpsXXV9lChoBkdAmBXdC3PRiWgHTegDaAhHQKDvDU2kzoF1fZQoaAZHQIr9YjhUBGRoB03oA2gIR0Cg8b4Uvf0mdX2UKGgGR0CRGf22oegdaAdN6ANoCEdAoPIRvFWGRHV9lChoBkdAmrie5SWJJ2gHTegDaAhHQKDzRpgTh5x1fZQoaAZHQJl77j+717JoB03oA2gIR0Cg964oJAt4dX2UKGgGR0CYqP/Ot4iYaAdN6ANoCEdAoPpaeumrKnV9lChoBkdAnAk08NhE0GgHTegDaAhHQKD6rrjYI0J1fZQoaAZHQJJys+2VmjFoB03oA2gIR0Cg++NMPBi1dX2UKGgGR0CV5x47A+INaAdN6ANoCEdAoQBS44Ia+HV9lChoBkdAk9I5Q+EAYGgHTegDaAhHQKEDCK1og3d1fZQoaAZHQJTFLDO1OTJoB03oA2gIR0ChA1+9Ba9sdX2UKGgGR0CQ61eANG3GaAdN6ANoCEdAoQSc/IKc/nV9lChoBkdAjd2wsoUi6mgHTegDaAhHQKEJJvR7Z391fZQoaAZHQIStFPP9kz5oB03oA2gIR0ChC+k6cRUWdX2UKGgGR0CHteCuloDgaAdN6ANoCEdAoQxAE2YOUnV9lChoBkdAlYo4YWLxZ2gHTegDaAhHQKENeEQGwA51fZQoaAZHQI9fGeQMhHNoB03oA2gIR0ChEe5ZB9kSdX2UKGgGR0CQsaCkoF3ZaAdN6ANoCEdAoRSuCNCJGnV9lChoBkdAkeSGShakh2gHTegDaAhHQKEVA5MlC1J1fZQoaAZHQJNvI1hsqKBoB03oA2gIR0ChFjysS00FdX2UKGgGR0CUzsG5tm+TaAdN6ANoCEdAoRq6MrEtNHV9lChoBkdAi04avzOHFmgHTegDaAhHQKEdc7vG6wt1fZQoaAZHQJQol45cTrVoB03oA2gIR0ChHcq/M4cWdX2UKGgGR0CTP6ZpBX0YaAdN6ANoCEdAoR8DeQ+2VnV9lChoBkdAlp55IMBp6GgHTegDaAhHQKEjdEF4cFR1fZQoaAZHQJUZW8jAzpJoB03oA2gIR0ChJiRMvh60dX2UKGgGR0CUrFbbUPQOaAdN6ANoCEdAoSZ5yp71I3V9lChoBkdAmU9xPKuB+WgHTegDaAhHQKEnsTVUdaN1fZQoaAZHQJH5sDW9US9oB03oA2gIR0ChLCXTd+G5dX2UKGgGR0CWMq/FzdULaAdN6ANoCEdAoS7XWMCLdnV9lChoBkdAkrFb+T/yXmgHTegDaAhHQKEvLeVs1sN1fZQoaAZHQJmZl/PPcBVoB03oA2gIR0ChMF/1g6U8dX2UKGgGR0CS/Jt8/lhgaAdN6ANoCEdAoTTGzlcQiHV9lChoBkdAmgdzf3vhImgHTegDaAhHQKE3dMtbs4V1fZQoaAZHQJFyhFWn0kJoB03oA2gIR0ChN8k5p8F7dX2UKGgGR0CVPtxe9i+daAdN6ANoCEdAoTj+8/UvwnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6727978a3bcd0258ba48d5cca32b828f3f70d3581b8698e958af55fb7dcf795d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fdf2cf41802fee4ea0376a8ecde345b0848ec345e77c51e07fb113ff486a67f
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022
|
2 |
+
- Python: 3.8.12
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ca0bd4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ca0bd4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ca0bd4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ca0bd4e50>", "_build": "<function ActorCriticPolicy._build at 0x7f6ca0bd4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6ca0bd4f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6ca0bda040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ca0bda0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6ca0bda160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ca0bda1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ca0bda280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ca0bda310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6ca0bccfc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680581868518317749, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOaS0z+0l+E/zlJIv2Exvz2WNQZAv/Zlv7OSGkDh9Sw+SthBP0y/hLwiani+BhkeQDsvJj+fpRDAj1oYwNPukb9Mhtc+rjiLv05dHT96qug8dF1FP2L2+72zG3C/jr5YwH1gmr/RYBXAVEgCP0p+hr+CA3Y+ptSXPw6fBj6zAag/bIPYvSLJCr/Eo+s+fV89v6DWQz8AqW9A+D5tP7Uklb+/Y4W+rSPXPzniwDxZPmw/05pKveCJRD9kxD0/jET4PypiSL4053s/5U5Ev16keT98QlQ/2FzbPlRIAj9Kfoa/Rbu0vm55Sr9ptIU+GugHPx6FzD+Dcwc/b+ksPbubc7+LYtE+qPsSP6426T6x+QQ/dC6Sv+RZ0L96nsg+GFZlvzNf+T4HRIC/ouAlP/q8sT9Nqsq+YXEkv0cBZL8orJk9fEJUP9FgFcBUSAI/Sn6Gv66CFr9MTgdA4JgZwBCRUr9FBD5A/wwFv9HX+TwfLc0/2q0QPUxynL9E542/QM74u1Bl6z+e09C5cGCMv/TK+L0hvlO/gP9+Pyu5g7+dpiK/gdekP/lSiL/Zf22/3OKwvH1gmr/YXNs+VEgCP+6jcz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB9KqW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlnJ2vQAAAACIkvm/AAAAAOJSK70AAAAAtin7PwAAAADQoPO9AAAAADtR8j8AAAAAMnjVPQAAAADsctu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkiXMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMVAq70AAAAAdP/8vwAAAABRja27AAAAAOe73j8AAAAA7ObXPQAAAACFA/4/AAAAAOeSpb0AAAAArCztvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+7UzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/1Qy+AAAAAH8R7r8AAAAAsVoIvQAAAAAX3fo/AAAAAOQOHb0AAAAAZEP2PwAAAABUbhs9AAAAAJ4l9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaoY22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADQRkPQAAAADxKgDAAAAAAHF8rr0AAAAA577jPwAAAABDdwC+AAAAAEUTAEAAAAAArhG3vQAAAAAv/eG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJr9jSofjjuMAWyUTegDjAF0lEdAoGU13IMjNnV9lChoBkdAl87TdDYywmgHTegDaAhHQKBoQIF/x2B1fZQoaAZHQJGUUIiTt9hoB03oA2gIR0CgaXf1YhdMdX2UKGgGR0CTQqQNkOI7aAdN6ANoCEdAoGsx/EwWWXV9lChoBkdAleCeXiR4hWgHTegDaAhHQKBt46mO2iN1fZQoaAZHQJz1y1rqMWJoB03oA2gIR0CgcOmJN0vHdX2UKGgGR0CQL1K5CngpaAdN6ANoCEdAoHIhjBl+VnV9lChoBkdAmd+ScPOIImgHTegDaAhHQKBz2YJE6T51fZQoaAZHQJaDPviLl3hoB03oA2gIR0CgdoioS+QEdX2UKGgGR0CTbRioKlYVaAdN6ANoCEdAoHmDp3X7L3V9lChoBkdAnau9foicG2gHTegDaAhHQKB6uID5j6N1fZQoaAZHQI1lYlhPTG5oB03oA2gIR0CgfHAWrOqvdX2UKGgGR0CPdapo9LYgaAdN6ANoCEdAoH8ZUrCm/HV9lChoBkdAnA6stsenymgHTegDaAhHQKCCFF2mpER1fZQoaAZHQJz8lcB2fTVoB03oA2gIR0Cgg0e2d/aydX2UKGgGR0Cbby6jnFHbaAdN6ANoCEdAoIT/3ta6jHV9lChoBkdAm+c64+bExmgHTegDaAhHQKCHsSFoL5R1fZQoaAZHQJx6HgQ6IWRoB03oA2gIR0CgirCEpRXPdX2UKGgGR0CdT6MAWBSUaAdN6ANoCEdAoIvnAGjbjHV9lChoBkdAmb0Q0j1PFmgHTegDaAhHQKCNoCJ40Mx1fZQoaAZHQJjpb/NqxkdoB03oA2gIR0CgkE86vJRwdX2UKGgGR0CeRBRISUTtaAdN6ANoCEdAoJNNbLU1AXV9lChoBkdAnuwWBSUC72gHTegDaAhHQKCUgcZLqUx1fZQoaAZHQJ7CmCJ40MxoB03oA2gIR0CgljlBIFvAdX2UKGgGR0CbPcVbA1vVaAdN6ANoCEdAoJjnnfVI7XV9lChoBkdAh7XntWuHOGgHTegDaAhHQKCb65R0lqt1fZQoaAZHQJl5OF23azxoB03oA2gIR0CgnR+mWMS9dX2UKGgGR0Cfxq1UlzEKaAdN6ANoCEdAoJ7Z42S+xnV9lChoBkdAnuzrhNucc2gHTegDaAhHQKChhBwdbPh1fZQoaAZHQJ+Fhm6GxlhoB03oA2gIR0CgpH8pkPMCdX2UKGgGR0CcqWZwn6VMaAdN6ANoCEdAoKWxiI+GGnV9lChoBkdAoJAuUt7KJWgHTegDaAhHQKCnZv7WNFV1fZQoaAZHQJ5W/ZK3/gloB03oA2gIR0Cgqg6ClJpWdX2UKGgGR0CgBOC0OVgQaAdN6ANoCEdAoK0LkZJkG3V9lChoBkdAm0cCMPz4DmgHTegDaAhHQKCuQc1fmcR1fZQoaAZHQJq2dvVEuxtoB03oA2gIR0Cgr/uK4x1xdX2UKGgGR0Cdk9gjyFwlaAdN6ANoCEdAoLKsxh2GI3V9lChoBkdAkWsC/9Hc12gHTW0CaAhHQKC1Wc+aBqd1fZQoaAZHQJ1hVrSE12toB03oA2gIR0Cgta4t6HCXdX2UKGgGR0CZI1huO0b+aAdN6ANoCEdAoLbkU0vXb3V9lChoBkdAmz9zUutfX2gHTegDaAhHQKC7R8vVVgh1fZQoaAZHQJjSpGMGX5ZoB03oA2gIR0CgvfKZDzAfdX2UKGgGR0CYYpQ8OkLyaAdN6ANoCEdAoL5GxMWXTnV9lChoBkdAnN2XaakRBmgHTegDaAhHQKC/eVQhwER1fZQoaAZHQJh+N6NVBD5oB03oA2gIR0Cgw94hEBsAdX2UKGgGR0CWuRzVtoBaaAdN6ANoCEdAoMaFrRBu43V9lChoBkdAmYPdL127nWgHTegDaAhHQKDG2zposZp1fZQoaAZHQJiy2CcwxnFoB03oA2gIR0CgyA6GHpKSdX2UKGgGR0CTjp52Qnx8aAdN6ANoCEdAoMxymoBJZnV9lChoBkdAlWBoSUTtcGgHTegDaAhHQKDPHiwSrYJ1fZQoaAZHQJgnB4D9wWFoB03oA2gIR0Cgz3Iq0+khdX2UKGgGR0CX7mUwSJ0oaAdN6ANoCEdAoNCkFjd56nV9lChoBkdAl8CP60pmVmgHTegDaAhHQKDVCTzundh1fZQoaAZHQJQa3MB6rvNoB03oA2gIR0Cg17fXPJJYdX2UKGgGR0CQ52veP7vYaAdN6ANoCEdAoNgNYW+GoXV9lChoBkdAkLdcfvF3p2gHTegDaAhHQKDZQ/9pAUt1fZQoaAZHQJio0iKR+0BoB03oA2gIR0Cg3aVj7Q9idX2UKGgGR0CZ3J0nw5NoaAdN6ANoCEdAoOBM384xUXV9lChoBkdAl3FUYGdI5GgHTegDaAhHQKDgocoYvWZ1fZQoaAZHQJocpSjxkNFoB03oA2gIR0Cg4doJRfnfdX2UKGgGR0CQJY7F85S4aAdN6ANoCEdAoOZUwWWQfnV9lChoBkdAniBqbSZ0CGgHTegDaAhHQKDpB5kbxVh1fZQoaAZHQIIp93ljmS1oB03oA2gIR0Cg6V43m3fAdX2UKGgGR0CT0wQtz0YkaAdN6ANoCEdAoOqUKVpsXXV9lChoBkdAmBXdC3PRiWgHTegDaAhHQKDvDU2kzoF1fZQoaAZHQIr9YjhUBGRoB03oA2gIR0Cg8b4Uvf0mdX2UKGgGR0CRGf22oegdaAdN6ANoCEdAoPIRvFWGRHV9lChoBkdAmrie5SWJJ2gHTegDaAhHQKDzRpgTh5x1fZQoaAZHQJl77j+717JoB03oA2gIR0Cg964oJAt4dX2UKGgGR0CYqP/Ot4iYaAdN6ANoCEdAoPpaeumrKnV9lChoBkdAnAk08NhE0GgHTegDaAhHQKD6rrjYI0J1fZQoaAZHQJJys+2VmjFoB03oA2gIR0Cg++NMPBi1dX2UKGgGR0CV5x47A+INaAdN6ANoCEdAoQBS44Ia+HV9lChoBkdAk9I5Q+EAYGgHTegDaAhHQKEDCK1og3d1fZQoaAZHQJTFLDO1OTJoB03oA2gIR0ChA1+9Ba9sdX2UKGgGR0CQ61eANG3GaAdN6ANoCEdAoQSc/IKc/nV9lChoBkdAjd2wsoUi6mgHTegDaAhHQKEJJvR7Z391fZQoaAZHQIStFPP9kz5oB03oA2gIR0ChC+k6cRUWdX2UKGgGR0CHteCuloDgaAdN6ANoCEdAoQxAE2YOUnV9lChoBkdAlYo4YWLxZ2gHTegDaAhHQKENeEQGwA51fZQoaAZHQI9fGeQMhHNoB03oA2gIR0ChEe5ZB9kSdX2UKGgGR0CQsaCkoF3ZaAdN6ANoCEdAoRSuCNCJGnV9lChoBkdAkeSGShakh2gHTegDaAhHQKEVA5MlC1J1fZQoaAZHQJNvI1hsqKBoB03oA2gIR0ChFjysS00FdX2UKGgGR0CUzsG5tm+TaAdN6ANoCEdAoRq6MrEtNHV9lChoBkdAi04avzOHFmgHTegDaAhHQKEdc7vG6wt1fZQoaAZHQJQol45cTrVoB03oA2gIR0ChHcq/M4cWdX2UKGgGR0CTP6ZpBX0YaAdN6ANoCEdAoR8DeQ+2VnV9lChoBkdAlp55IMBp6GgHTegDaAhHQKEjdEF4cFR1fZQoaAZHQJUZW8jAzpJoB03oA2gIR0ChJiRMvh60dX2UKGgGR0CUrFbbUPQOaAdN6ANoCEdAoSZ5yp71I3V9lChoBkdAmU9xPKuB+WgHTegDaAhHQKEnsTVUdaN1fZQoaAZHQJH5sDW9US9oB03oA2gIR0ChLCXTd+G5dX2UKGgGR0CWMq/FzdULaAdN6ANoCEdAoS7XWMCLdnV9lChoBkdAkrFb+T/yXmgHTegDaAhHQKEvLeVs1sN1fZQoaAZHQJmZl/PPcBVoB03oA2gIR0ChMF/1g6U8dX2UKGgGR0CS/Jt8/lhgaAdN6ANoCEdAoTTGzlcQiHV9lChoBkdAmgdzf3vhImgHTegDaAhHQKE3dMtbs4V1fZQoaAZHQJFyhFWn0kJoB03oA2gIR0ChN8k5p8F7dX2UKGgGR0CVPtxe9i+daAdN6ANoCEdAoTj+8/UvwnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38311f179cee80d679dbc9fd3032ffa6476c58713e0fab1aeecdf2eeaae86c04
|
3 |
+
size 1008064
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1270.177660493739, "std_reward": 150.9003244420329, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T22:37:05.914832"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2914a188cf477cca9a911dd04dc33a6771dd9038f1d2089135d26ec208be3d4c
|
3 |
+
size 2521
|