test
Browse files- LunarLander-v2.zip +3 -0
- LunarLander-v2/_stable_baselines3_version +1 -0
- LunarLander-v2/data +95 -0
- LunarLander-v2/policy.optimizer.pth +3 -0
- LunarLander-v2/policy.pth +3 -0
- LunarLander-v2/pytorch_variables.pth +3 -0
- LunarLander-v2/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fdfd5db9a2d046d80c9df9c34ce6604dc9ad9c34f19d62115f95638efb0d2a3
|
3 |
+
size 147561
|
LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f53926fa440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f53926fa4d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53926fa560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f53926fa5f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f53926fa680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f53926fa710>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f53926fa7a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f53926fa830>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f53926fa8c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f53926fa950>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f53926fa9e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f53926faa70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f53926f2280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679250541059166210,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHpHOL7o7Yg/ekvUvuQwy762TlK+/uDzvQAAAAAAAAAATZsAPcNhMbrKVoY35qMFM3MlNDpGCZy2AACAPwAAgD8zT3w8uG7suUVNiLoRAeMxKxUWu9yinzkAAIA/AACAP7N9a70op60/KlfJvuI7sb4GNXu9YeOKvgAAAAAAAAAAzcbxvOEYpbrjm9W68/sJtcWAoLpr3/I5AACAPwAAgD8A8J+7UmDLuVvC6bq72EC2ybAeuqf4CjoAAIA/AACAP83EmDvDKRi6ZhDKOtd5kDWoS4K6zhfpuQAAgD8AAIA/ZqnYvPYMfrq2nXO7RLs0OF72prrxuhE6AACAPwAAgD8A6Bo7XPNyuuANb7pKIDU2uxwUuVnMiTkAAIA/AACAP1oVGr6U7Ik+Tr+WPrCCpL4QRB095r4XPQAAAAAAAAAAmokRvK4BlLov4K64BPefs3anProymMo3AACAPwAAgD/NVEM8w9kTunNRjjg88JszTriSOw80qbcAAIA/AACAPwBL+DyPAg66RRh/OuSmLjVHooA7LauTuQAAgD8AAIA/GqGZvcPxQ7rNOyG53gous/jNN7qGRzc4AACAPwAAgD8A+EQ7e2KPupsdfrqvA3K1XxE8ubpHkzkAAIA/AACAPzNPa7x/t4c/mlMBvh65rL4DYYM8rS+7vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGTc10HxtZECUhpRSlIwBbJRN6AOMAXSUR0CHjx5GjKxLdX2UKGgGaAloD0MI5/9VRw5uaECUhpRSlGgVTegDaBZHQIeY91KXfIl1fZQoaAZoCWgPQwiu1onL8UFjQJSGlFKUaBVN6ANoFkdAh53E9U0el3V9lChoBmgJaA9DCJusUQ/RQk9AlIaUUpRoFUvLaBZHQIeenKSxJNF1fZQoaAZoCWgPQwha1Ce5w0VkQJSGlFKUaBVN6ANoFkdAh5/h3iaRZHV9lChoBmgJaA9DCG/zxknhQWVAlIaUUpRoFU3oA2gWR0CHo4vhZQpGdX2UKGgGaAloD0MIKnKIuDlpQkCUhpRSlGgVS8RoFkdAh6vq3NLUTnV9lChoBmgJaA9DCCGx3T3AqmRAlIaUUpRoFU3oA2gWR0CHrBL8JlasdX2UKGgGaAloD0MIqu/8ogTiYkCUhpRSlGgVTegDaBZHQIet2etjkMl1fZQoaAZoCWgPQwhd3EYDeFVQQJSGlFKUaBVL02gWR0CHrtZsbedkdX2UKGgGaAloD0MI/oAHBhB6ZkCUhpRSlGgVTegDaBZHQIew82tMfzV1fZQoaAZoCWgPQwjspL4sbU5kQJSGlFKUaBVN6ANoFkdAh7MhKDkELnV9lChoBmgJaA9DCJmc2hkmXWRAlIaUUpRoFU3oA2gWR0CHtazN2TxHdX2UKGgGaAloD0MI7gbRWtE0YUCUhpRSlGgVTegDaBZHQIe7HMGHHm11fZQoaAZoCWgPQwhgBmNEooxNQJSGlFKUaBVLrmgWR0CHu7A44p+ddX2UKGgGaAloD0MIuoRDb3GjZUCUhpRSlGgVTegDaBZHQIfC7ABT4tZ1fZQoaAZoCWgPQwjqeTcWFG1mQJSGlFKUaBVN6ANoFkdAh99XHq/ucHV9lChoBmgJaA9DCIkHlE25TWJAlIaUUpRoFU3oA2gWR0CH5RCP6sQvdX2UKGgGaAloD0MIBi/6ClLVZECUhpRSlGgVTegDaBZHQIfmjAFgUlB1fZQoaAZoCWgPQwjhlo+kpHxnQJSGlFKUaBVN6ANoFkdAh+frqD9OynV9lChoBmgJaA9DCB5U4jpGFGNAlIaUUpRoFU3oA2gWR0CH+HK28Zk1dX2UKGgGaAloD0MIa4E9JtKIZ0CUhpRSlGgVTegDaBZHQIf9x1LamGd1fZQoaAZoCWgPQwhEFmninRVjQJSGlFKUaBVN6ANoFkdAiALg2ZRbbHV9lChoBmgJaA9DCK6ek9436WNAlIaUUpRoFU3oA2gWR0CIC7I+W4VidX2UKGgGaAloD0MIrMWnABh4ZECUhpRSlGgVTegDaBZHQIgL28brC3x1fZQoaAZoCWgPQwjpZKn1fqtkQJSGlFKUaBVN6ANoFkdAiA2WE9Mbm3V9lChoBmgJaA9DCOC7zRsniWNAlIaUUpRoFU3oA2gWR0CIDo7lJYkndX2UKGgGaAloD0MIeEMaFTjUYUCUhpRSlGgVTegDaBZHQIgS2vW6K+B1fZQoaAZoCWgPQwhJZYo5iOpmQJSGlFKUaBVN6ANoFkdAiBWNnPE873V9lChoBmgJaA9DCKCJsOHpLmZAlIaUUpRoFU3oA2gWR0CIGzruYx+KdX2UKGgGaAloD0MIMX4a92aSZECUhpRSlGgVTegDaBZHQIgb2EIw/Ph1fZQoaAZoCWgPQwhFD3wMVghpQJSGlFKUaBVN6ANoFkdAiCODdpItlXV9lChoBmgJaA9DCB4X1SKie2VAlIaUUpRoFU3oA2gWR0CIJY2hqTKUdX2UKGgGaAloD0MIJhk5C3sBYkCUhpRSlGgVTegDaBZHQIhF48W9DhN1fZQoaAZoCWgPQwjJ5qp5joRjQJSGlFKUaBVN6ANoFkdAiEdmIsRQJ3V9lChoBmgJaA9DCMy3Pqy3CGhAlIaUUpRoFU3oA2gWR0CISMPatcOcdX2UKGgGaAloD0MI8fPfg1fqYECUhpRSlGgVTegDaBZHQIhZvR1HOKR1fZQoaAZoCWgPQwj2CaAY2eNmQJSGlFKUaBVN6ANoFkdAiF8YOlO45XV9lChoBmgJaA9DCE0ychZ2MWRAlIaUUpRoFU3oA2gWR0CIZB74zrNXdX2UKGgGaAloD0MINeuM7wuEYUCUhpRSlGgVTegDaBZHQIhtBb4agmJ1fZQoaAZoCWgPQwiVSQ1tAFFmQJSGlFKUaBVN6ANoFkdAiG0yPU8V6HV9lChoBmgJaA9DCFdgyOpWbWVAlIaUUpRoFU3oA2gWR0CIbxNZ/0/XdX2UKGgGaAloD0MIW7Iqwk2UYkCUhpRSlGgVTegDaBZHQIhwFYbKifx1fZQoaAZoCWgPQwh7SzlfbJJnQJSGlFKUaBVN6ANoFkdAiHR8LBsQ/XV9lChoBmgJaA9DCLX/AdYqP2dAlIaUUpRoFU3oA2gWR0CIdziCrcTKdX2UKGgGaAloD0MIQPuRIjLhZECUhpRSlGgVTegDaBZHQIh9ElVtGd91fZQoaAZoCWgPQwh7EticAzZkQJSGlFKUaBVN6ANoFkdAiH2zj/+85HV9lChoBmgJaA9DCGztfaqKomBAlIaUUpRoFU3oA2gWR0CIhTFa0QbudX2UKGgGaAloD0MIf74tWKojYUCUhpRSlGgVTegDaBZHQIiHGCPIXCV1fZQoaAZoCWgPQwjwplt2CAZkQJSGlFKUaBVN6ANoFkdAiKbpx//ecnV9lChoBmgJaA9DCE0R4PQurGdAlIaUUpRoFU3oA2gWR0CIqERFI/Z/dX2UKGgGaAloD0MI6wJeZthdaECUhpRSlGgVTegDaBZHQIipipBHCoF1fZQoaAZoCWgPQwgd5WA2gcRmQJSGlFKUaBVN6ANoFkdAiLlL9ETg23V9lChoBmgJaA9DCIgRwqONcWVAlIaUUpRoFU3oA2gWR0CIvqJrLyMDdX2UKGgGaAloD0MINgadELq8YUCUhpRSlGgVTegDaBZHQIjDm9L6DXh1fZQoaAZoCWgPQwjdeHdkLAxnQJSGlFKUaBVN6ANoFkdAiMxWTHKfWnV9lChoBmgJaA9DCO2d0ValJWhAlIaUUpRoFU3oA2gWR0CIzH+x4Y78dX2UKGgGaAloD0MIUP7uHbV4Y0CUhpRSlGgVTegDaBZHQIjOTiZOSGJ1fZQoaAZoCWgPQwg1ecpqOm1kQJSGlFKUaBVN6ANoFkdAiM9H6uW8iHV9lChoBmgJaA9DCFMlyt5S22JAlIaUUpRoFU3oA2gWR0CI09ITXarWdX2UKGgGaAloD0MIRrHc0urTY0CUhpRSlGgVTegDaBZHQIjWnXoTwlV1fZQoaAZoCWgPQwj5SbVPx3hfQJSGlFKUaBVN6ANoFkdAiNzLAHmig3V9lChoBmgJaA9DCOG4jJsayWNAlIaUUpRoFU3oA2gWR0CI3XFhoduHdX2UKGgGaAloD0MIl1gZjXyJY0CUhpRSlGgVTegDaBZHQIjlKHCXQdF1fZQoaAZoCWgPQwgqcoi4OSlkQJSGlFKUaBVN6ANoFkdAiOcjye7L+3V9lChoBmgJaA9DCGwFTUus3kdAlIaUUpRoFUu+aBZHQIjqMQEpy6t1fZQoaAZoCWgPQwgmpguxestnQJSGlFKUaBVN6ANoFkdAiQcUjcEeQ3V9lChoBmgJaA9DCItuvaYHg1xAlIaUUpRoFU3oA2gWR0CJCGlPacqfdX2UKGgGaAloD0MIAn6NJEHEX0CUhpRSlGgVTegDaBZHQIkJmndfsu51fZQoaAZoCWgPQwi1UgjkEq5nQJSGlFKUaBVN6ANoFkdAiRhR82JizHV9lChoBmgJaA9DCP2C3bDtDGJAlIaUUpRoFU3oA2gWR0CJHXBjWkJsdX2UKGgGaAloD0MIXMmOjcAvZUCUhpRSlGgVTegDaBZHQIkiM5OrQw91fZQoaAZoCWgPQwjpuvCD87RjQJSGlFKUaBVN6ANoFkdAiSqh/Aj6e3V9lChoBmgJaA9DCHvdIjBWY2JAlIaUUpRoFU3oA2gWR0CJKssgdOqOdX2UKGgGaAloD0MI8N5RY8JbZ0CUhpRSlGgVTegDaBZHQIksgBBAv+R1fZQoaAZoCWgPQwiCxHb3AEhgQJSGlFKUaBVN6ANoFkdAiS17L2YfGXV9lChoBmgJaA9DCL02GyuxUWpAlIaUUpRoFU3oA2gWR0CJMcXTEzfrdX2UKGgGaAloD0MI1Ce5w6ZtZ0CUhpRSlGgVTegDaBZHQIk0ZBgNPP91fZQoaAZoCWgPQwg0L4fdd/9vQJSGlFKUaBVNGANoFkdAiTYISteUp3V9lChoBmgJaA9DCLIS86ykxmhAlIaUUpRoFU3oA2gWR0CJOpDYywfRdX2UKGgGaAloD0MIjC0EOahaZkCUhpRSlGgVTegDaBZHQIlCdA3T/hl1fZQoaAZoCWgPQwj7O9ujN35jQJSGlFKUaBVN6ANoFkdAiUekRaouPHV9lChoBmgJaA9DCLezrzxI1GNAlIaUUpRoFU3oA2gWR0CJSk3EyckMdX2UKGgGaAloD0MIb/JbdLJBYkCUhpRSlGgVTegDaBZHQIlmXluFYdR1fZQoaAZoCWgPQwhGKLaCJiloQJSGlFKUaBVN6ANoFkdAiWfAC4jKPnV9lChoBmgJaA9DCHBcxk0N+mJAlIaUUpRoFU3oA2gWR0CJePDtw71adX2UKGgGaAloD0MIAOMZNPRpYECUhpRSlGgVTegDaBZHQIl+nK8tf5V1fZQoaAZoCWgPQwgYCAJk6A9gQJSGlFKUaBVN6ANoFkdAiYPjLKV6eHV9lChoBmgJaA9DCF+Zt+o6GWJAlIaUUpRoFU3oA2gWR0CJjQ7+1jRVdX2UKGgGaAloD0MIyQORRRpMaECUhpRSlGgVTegDaBZHQImNODBdld11fZQoaAZoCWgPQwidSDDVzDRmQJSGlFKUaBVN6ANoFkdAiY8IF/x2CHV9lChoBmgJaA9DCIIDWroCmGJAlIaUUpRoFU3oA2gWR0CJkA9OARTTdX2UKGgGaAloD0MIc9U8R2SBZECUhpRSlGgVTegDaBZHQImUv1FpfyB1fZQoaAZoCWgPQwgEqn8QySpkQJSGlFKUaBVN6ANoFkdAiZeKkM1CPnV9lChoBmgJaA9DCHiZYaMss2RAlIaUUpRoFU3oA2gWR0CJmTAmAskIdX2UKGgGaAloD0MI9fdSeFDiZ0CUhpRSlGgVTegDaBZHQImdjn5i3G51fZQoaAZoCWgPQwik3lM5bQpoQJSGlFKUaBVN6ANoFkdAiaT6XSjQA3V9lChoBmgJaA9DCA+XHHdKRWFAlIaUUpRoFU3oA2gWR0CJqlVS4vvjdX2UKGgGaAloD0MIhnMNMzT4aECUhpRSlGgVTegDaBZHQIms6xzJZGN1fZQoaAZoCWgPQwhKDW0ANvljQJSGlFKUaBVN6ANoFkdAia5u76Hj63VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:303c978c20bbd9fafa00ae31690390b67f2d4733435929f8e27c1c35c628f313
|
3 |
+
size 87929
|
LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eebda110729a3e05809ffebbb6dc01b6ed95c1e9e75a054dfe5066f21eb904b
|
3 |
+
size 43393
|
LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-41-generic-x86_64-with-glibc2.31 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 265.43 +/- 16.87
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f53926fa440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f53926fa4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53926fa560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f53926fa5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f53926fa680>", "forward": "<function ActorCriticPolicy.forward at 0x7f53926fa710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f53926fa7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f53926fa830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f53926fa8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f53926fa950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f53926fa9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f53926faa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f53926f2280>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.31 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f53926fa440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f53926fa4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53926fa560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f53926fa5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f53926fa680>", "forward": "<function ActorCriticPolicy.forward at 0x7f53926fa710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f53926fa7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f53926fa830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f53926fa8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f53926fa950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f53926fa9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f53926faa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f53926f2280>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679250541059166210, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHpHOL7o7Yg/ekvUvuQwy762TlK+/uDzvQAAAAAAAAAATZsAPcNhMbrKVoY35qMFM3MlNDpGCZy2AACAPwAAgD8zT3w8uG7suUVNiLoRAeMxKxUWu9yinzkAAIA/AACAP7N9a70op60/KlfJvuI7sb4GNXu9YeOKvgAAAAAAAAAAzcbxvOEYpbrjm9W68/sJtcWAoLpr3/I5AACAPwAAgD8A8J+7UmDLuVvC6bq72EC2ybAeuqf4CjoAAIA/AACAP83EmDvDKRi6ZhDKOtd5kDWoS4K6zhfpuQAAgD8AAIA/ZqnYvPYMfrq2nXO7RLs0OF72prrxuhE6AACAPwAAgD8A6Bo7XPNyuuANb7pKIDU2uxwUuVnMiTkAAIA/AACAP1oVGr6U7Ik+Tr+WPrCCpL4QRB095r4XPQAAAAAAAAAAmokRvK4BlLov4K64BPefs3anProymMo3AACAPwAAgD/NVEM8w9kTunNRjjg88JszTriSOw80qbcAAIA/AACAPwBL+DyPAg66RRh/OuSmLjVHooA7LauTuQAAgD8AAIA/GqGZvcPxQ7rNOyG53gous/jNN7qGRzc4AACAPwAAgD8A+EQ7e2KPupsdfrqvA3K1XxE8ubpHkzkAAIA/AACAPzNPa7x/t4c/mlMBvh65rL4DYYM8rS+7vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGTc10HxtZECUhpRSlIwBbJRN6AOMAXSUR0CHjx5GjKxLdX2UKGgGaAloD0MI5/9VRw5uaECUhpRSlGgVTegDaBZHQIeY91KXfIl1fZQoaAZoCWgPQwiu1onL8UFjQJSGlFKUaBVN6ANoFkdAh53E9U0el3V9lChoBmgJaA9DCJusUQ/RQk9AlIaUUpRoFUvLaBZHQIeenKSxJNF1fZQoaAZoCWgPQwha1Ce5w0VkQJSGlFKUaBVN6ANoFkdAh5/h3iaRZHV9lChoBmgJaA9DCG/zxknhQWVAlIaUUpRoFU3oA2gWR0CHo4vhZQpGdX2UKGgGaAloD0MIKnKIuDlpQkCUhpRSlGgVS8RoFkdAh6vq3NLUTnV9lChoBmgJaA9DCCGx3T3AqmRAlIaUUpRoFU3oA2gWR0CHrBL8JlasdX2UKGgGaAloD0MIqu/8ogTiYkCUhpRSlGgVTegDaBZHQIet2etjkMl1fZQoaAZoCWgPQwhd3EYDeFVQQJSGlFKUaBVL02gWR0CHrtZsbedkdX2UKGgGaAloD0MI/oAHBhB6ZkCUhpRSlGgVTegDaBZHQIew82tMfzV1fZQoaAZoCWgPQwjspL4sbU5kQJSGlFKUaBVN6ANoFkdAh7MhKDkELnV9lChoBmgJaA9DCJmc2hkmXWRAlIaUUpRoFU3oA2gWR0CHtazN2TxHdX2UKGgGaAloD0MI7gbRWtE0YUCUhpRSlGgVTegDaBZHQIe7HMGHHm11fZQoaAZoCWgPQwhgBmNEooxNQJSGlFKUaBVLrmgWR0CHu7A44p+ddX2UKGgGaAloD0MIuoRDb3GjZUCUhpRSlGgVTegDaBZHQIfC7ABT4tZ1fZQoaAZoCWgPQwjqeTcWFG1mQJSGlFKUaBVN6ANoFkdAh99XHq/ucHV9lChoBmgJaA9DCIkHlE25TWJAlIaUUpRoFU3oA2gWR0CH5RCP6sQvdX2UKGgGaAloD0MIBi/6ClLVZECUhpRSlGgVTegDaBZHQIfmjAFgUlB1fZQoaAZoCWgPQwjhlo+kpHxnQJSGlFKUaBVN6ANoFkdAh+frqD9OynV9lChoBmgJaA9DCB5U4jpGFGNAlIaUUpRoFU3oA2gWR0CH+HK28Zk1dX2UKGgGaAloD0MIa4E9JtKIZ0CUhpRSlGgVTegDaBZHQIf9x1LamGd1fZQoaAZoCWgPQwhEFmninRVjQJSGlFKUaBVN6ANoFkdAiALg2ZRbbHV9lChoBmgJaA9DCK6ek9436WNAlIaUUpRoFU3oA2gWR0CIC7I+W4VidX2UKGgGaAloD0MIrMWnABh4ZECUhpRSlGgVTegDaBZHQIgL28brC3x1fZQoaAZoCWgPQwjpZKn1fqtkQJSGlFKUaBVN6ANoFkdAiA2WE9Mbm3V9lChoBmgJaA9DCOC7zRsniWNAlIaUUpRoFU3oA2gWR0CIDo7lJYkndX2UKGgGaAloD0MIeEMaFTjUYUCUhpRSlGgVTegDaBZHQIgS2vW6K+B1fZQoaAZoCWgPQwhJZYo5iOpmQJSGlFKUaBVN6ANoFkdAiBWNnPE873V9lChoBmgJaA9DCKCJsOHpLmZAlIaUUpRoFU3oA2gWR0CIGzruYx+KdX2UKGgGaAloD0MIMX4a92aSZECUhpRSlGgVTegDaBZHQIgb2EIw/Ph1fZQoaAZoCWgPQwhFD3wMVghpQJSGlFKUaBVN6ANoFkdAiCODdpItlXV9lChoBmgJaA9DCB4X1SKie2VAlIaUUpRoFU3oA2gWR0CIJY2hqTKUdX2UKGgGaAloD0MIJhk5C3sBYkCUhpRSlGgVTegDaBZHQIhF48W9DhN1fZQoaAZoCWgPQwjJ5qp5joRjQJSGlFKUaBVN6ANoFkdAiEdmIsRQJ3V9lChoBmgJaA9DCMy3Pqy3CGhAlIaUUpRoFU3oA2gWR0CISMPatcOcdX2UKGgGaAloD0MI8fPfg1fqYECUhpRSlGgVTegDaBZHQIhZvR1HOKR1fZQoaAZoCWgPQwj2CaAY2eNmQJSGlFKUaBVN6ANoFkdAiF8YOlO45XV9lChoBmgJaA9DCE0ychZ2MWRAlIaUUpRoFU3oA2gWR0CIZB74zrNXdX2UKGgGaAloD0MINeuM7wuEYUCUhpRSlGgVTegDaBZHQIhtBb4agmJ1fZQoaAZoCWgPQwiVSQ1tAFFmQJSGlFKUaBVN6ANoFkdAiG0yPU8V6HV9lChoBmgJaA9DCFdgyOpWbWVAlIaUUpRoFU3oA2gWR0CIbxNZ/0/XdX2UKGgGaAloD0MIW7Iqwk2UYkCUhpRSlGgVTegDaBZHQIhwFYbKifx1fZQoaAZoCWgPQwh7SzlfbJJnQJSGlFKUaBVN6ANoFkdAiHR8LBsQ/XV9lChoBmgJaA9DCLX/AdYqP2dAlIaUUpRoFU3oA2gWR0CIdziCrcTKdX2UKGgGaAloD0MIQPuRIjLhZECUhpRSlGgVTegDaBZHQIh9ElVtGd91fZQoaAZoCWgPQwh7EticAzZkQJSGlFKUaBVN6ANoFkdAiH2zj/+85HV9lChoBmgJaA9DCGztfaqKomBAlIaUUpRoFU3oA2gWR0CIhTFa0QbudX2UKGgGaAloD0MIf74tWKojYUCUhpRSlGgVTegDaBZHQIiHGCPIXCV1fZQoaAZoCWgPQwjwplt2CAZkQJSGlFKUaBVN6ANoFkdAiKbpx//ecnV9lChoBmgJaA9DCE0R4PQurGdAlIaUUpRoFU3oA2gWR0CIqERFI/Z/dX2UKGgGaAloD0MI6wJeZthdaECUhpRSlGgVTegDaBZHQIipipBHCoF1fZQoaAZoCWgPQwgd5WA2gcRmQJSGlFKUaBVN6ANoFkdAiLlL9ETg23V9lChoBmgJaA9DCIgRwqONcWVAlIaUUpRoFU3oA2gWR0CIvqJrLyMDdX2UKGgGaAloD0MINgadELq8YUCUhpRSlGgVTegDaBZHQIjDm9L6DXh1fZQoaAZoCWgPQwjdeHdkLAxnQJSGlFKUaBVN6ANoFkdAiMxWTHKfWnV9lChoBmgJaA9DCO2d0ValJWhAlIaUUpRoFU3oA2gWR0CIzH+x4Y78dX2UKGgGaAloD0MIUP7uHbV4Y0CUhpRSlGgVTegDaBZHQIjOTiZOSGJ1fZQoaAZoCWgPQwg1ecpqOm1kQJSGlFKUaBVN6ANoFkdAiM9H6uW8iHV9lChoBmgJaA9DCFMlyt5S22JAlIaUUpRoFU3oA2gWR0CI09ITXarWdX2UKGgGaAloD0MIRrHc0urTY0CUhpRSlGgVTegDaBZHQIjWnXoTwlV1fZQoaAZoCWgPQwj5SbVPx3hfQJSGlFKUaBVN6ANoFkdAiNzLAHmig3V9lChoBmgJaA9DCOG4jJsayWNAlIaUUpRoFU3oA2gWR0CI3XFhoduHdX2UKGgGaAloD0MIl1gZjXyJY0CUhpRSlGgVTegDaBZHQIjlKHCXQdF1fZQoaAZoCWgPQwgqcoi4OSlkQJSGlFKUaBVN6ANoFkdAiOcjye7L+3V9lChoBmgJaA9DCGwFTUus3kdAlIaUUpRoFUu+aBZHQIjqMQEpy6t1fZQoaAZoCWgPQwgmpguxestnQJSGlFKUaBVN6ANoFkdAiQcUjcEeQ3V9lChoBmgJaA9DCItuvaYHg1xAlIaUUpRoFU3oA2gWR0CJCGlPacqfdX2UKGgGaAloD0MIAn6NJEHEX0CUhpRSlGgVTegDaBZHQIkJmndfsu51fZQoaAZoCWgPQwi1UgjkEq5nQJSGlFKUaBVN6ANoFkdAiRhR82JizHV9lChoBmgJaA9DCP2C3bDtDGJAlIaUUpRoFU3oA2gWR0CJHXBjWkJsdX2UKGgGaAloD0MIXMmOjcAvZUCUhpRSlGgVTegDaBZHQIkiM5OrQw91fZQoaAZoCWgPQwjpuvCD87RjQJSGlFKUaBVN6ANoFkdAiSqh/Aj6e3V9lChoBmgJaA9DCHvdIjBWY2JAlIaUUpRoFU3oA2gWR0CJKssgdOqOdX2UKGgGaAloD0MI8N5RY8JbZ0CUhpRSlGgVTegDaBZHQIksgBBAv+R1fZQoaAZoCWgPQwiCxHb3AEhgQJSGlFKUaBVN6ANoFkdAiS17L2YfGXV9lChoBmgJaA9DCL02GyuxUWpAlIaUUpRoFU3oA2gWR0CJMcXTEzfrdX2UKGgGaAloD0MI1Ce5w6ZtZ0CUhpRSlGgVTegDaBZHQIk0ZBgNPP91fZQoaAZoCWgPQwg0L4fdd/9vQJSGlFKUaBVNGANoFkdAiTYISteUp3V9lChoBmgJaA9DCLIS86ykxmhAlIaUUpRoFU3oA2gWR0CJOpDYywfRdX2UKGgGaAloD0MIjC0EOahaZkCUhpRSlGgVTegDaBZHQIlCdA3T/hl1fZQoaAZoCWgPQwj7O9ujN35jQJSGlFKUaBVN6ANoFkdAiUekRaouPHV9lChoBmgJaA9DCLezrzxI1GNAlIaUUpRoFU3oA2gWR0CJSk3EyckMdX2UKGgGaAloD0MIb/JbdLJBYkCUhpRSlGgVTegDaBZHQIlmXluFYdR1fZQoaAZoCWgPQwhGKLaCJiloQJSGlFKUaBVN6ANoFkdAiWfAC4jKPnV9lChoBmgJaA9DCHBcxk0N+mJAlIaUUpRoFU3oA2gWR0CJePDtw71adX2UKGgGaAloD0MIAOMZNPRpYECUhpRSlGgVTegDaBZHQIl+nK8tf5V1fZQoaAZoCWgPQwgYCAJk6A9gQJSGlFKUaBVN6ANoFkdAiYPjLKV6eHV9lChoBmgJaA9DCF+Zt+o6GWJAlIaUUpRoFU3oA2gWR0CJjQ7+1jRVdX2UKGgGaAloD0MIyQORRRpMaECUhpRSlGgVTegDaBZHQImNODBdld11fZQoaAZoCWgPQwidSDDVzDRmQJSGlFKUaBVN6ANoFkdAiY8IF/x2CHV9lChoBmgJaA9DCIIDWroCmGJAlIaUUpRoFU3oA2gWR0CJkA9OARTTdX2UKGgGaAloD0MIc9U8R2SBZECUhpRSlGgVTegDaBZHQImUv1FpfyB1fZQoaAZoCWgPQwgEqn8QySpkQJSGlFKUaBVN6ANoFkdAiZeKkM1CPnV9lChoBmgJaA9DCHiZYaMss2RAlIaUUpRoFU3oA2gWR0CJmTAmAskIdX2UKGgGaAloD0MI9fdSeFDiZ0CUhpRSlGgVTegDaBZHQImdjn5i3G51fZQoaAZoCWgPQwik3lM5bQpoQJSGlFKUaBVN6ANoFkdAiaT6XSjQA3V9lChoBmgJaA9DCA+XHHdKRWFAlIaUUpRoFU3oA2gWR0CJqlVS4vvjdX2UKGgGaAloD0MIhnMNMzT4aECUhpRSlGgVTegDaBZHQIms6xzJZGN1fZQoaAZoCWgPQwhKDW0ANvljQJSGlFKUaBVN6ANoFkdAia5u76Hj63VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.31 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 265.42810131594206, "std_reward": 16.872430781182423, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T11:42:27.694780"}
|