File size: 9,755 Bytes
d758c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import ast
import itertools
import json
import os
import sys

import _jsonnet
import asdl
import astor
import torch
import tqdm

from seq2struct import beam_search
from seq2struct import datasets
from seq2struct import models
from seq2struct import optimizers
from seq2struct.utils import registry
from seq2struct.utils import saver as saver_mod

from seq2struct.models.spider import spider_beam_search

class Inferer:
    def __init__(self, config):
        self.config = config
        if torch.cuda.is_available():
            self.device = torch.device('cuda')
        else:
            self.device = torch.device('cpu')
            torch.set_num_threads(1)

        # 0. Construct preprocessors
        self.model_preproc = registry.instantiate(
            registry.lookup('model', config['model']).Preproc,
            config['model'])
        self.model_preproc.load()

    def load_model(self, logdir, step):
        '''Load a model (identified by the config used for construction) and return it'''
        # 1. Construct model
        model = registry.construct('model', self.config['model'], preproc=self.model_preproc, device=self.device)
        model.to(self.device)
        model.eval()
        model.visualize_flag = False

        # 2. Restore its parameters
        saver = saver_mod.Saver({"model": model})
        last_step = saver.restore(logdir, step=step, map_location=self.device, item_keys=["model"])

        if not last_step:
            raise Exception('Attempting to infer on untrained model')
        return model

    def infer(self, model, output_path, args):
        output = open(output_path, 'w')

        with torch.no_grad():
            if args.mode == 'infer':
                orig_data = registry.construct('dataset', self.config['data'][args.section])
                preproc_data = self.model_preproc.dataset(args.section)
                if args.limit:
                    sliced_orig_data = itertools.islice(orig_data, args.limit)
                    sliced_preproc_data = itertools.islice(preproc_data, args.limit)
                else:
                    sliced_orig_data = orig_data
                    sliced_preproc_data = preproc_data
                assert len(orig_data) == len(preproc_data)
                self._inner_infer(model, args.beam_size, args.output_history, sliced_orig_data, sliced_preproc_data, output, args.use_heuristic)
            elif args.mode == 'debug':
                data = self.model_preproc.dataset(args.section)
                if args.limit:
                    sliced_data = itertools.islice(data, args.limit)
                else:
                    sliced_data = data
                self._debug(model, sliced_data, output)
            elif args.mode == 'visualize_attention':
                model.visualize_flag = True
                model.decoder.visualize_flag = True
                data = registry.construct('dataset', self.config['data'][args.section])
                if args.limit:
                    sliced_data = itertools.islice(data, args.limit)
                else:
                    sliced_data = data
                self._visualize_attention(model, args.beam_size, args.output_history, sliced_data, args.res1, args.res2, args.res3, output)

    def _infer_one(self, model, data_item, preproc_item, beam_size, output_history=False, use_heuristic=True):
        if use_heuristic:
            # TODO: from_cond should be true from non-bert model
            beams = spider_beam_search.beam_search_with_heuristics(
                model, data_item, preproc_item, beam_size=beam_size, max_steps=1000, from_cond=False)
        else:
            beams = beam_search.beam_search(
                model, data_item, preproc_item, beam_size=beam_size, max_steps=1000)
        decoded = []
        for beam in beams:
            model_output, inferred_code = beam.inference_state.finalize()

            decoded.append({
                'orig_question': data_item.orig["question"],
                'model_output': model_output,
                'inferred_code': inferred_code,
                'score': beam.score,
                **({
                       'choice_history': beam.choice_history,
                       'score_history': beam.score_history,
                   } if output_history else {})})
        return decoded

    def _inner_infer(self, model, beam_size, output_history, sliced_orig_data, sliced_preproc_data, output, use_heuristic=False):
        for i, (orig_item, preproc_item) in enumerate(
                tqdm.tqdm(zip(sliced_orig_data, sliced_preproc_data),
                          total=len(sliced_orig_data))):
            if use_heuristic:
                #TODO: from_cond should be true from non-bert model
                beams = spider_beam_search.beam_search_with_heuristics(
                    model, orig_item, preproc_item, beam_size=beam_size, max_steps=1000, from_cond=False)
            else:
                beams = beam_search.beam_search(
                   model, orig_item, preproc_item, beam_size=beam_size, max_steps=1000)

            decoded = []
            for beam in beams:
                model_output, inferred_code = beam.inference_state.finalize()

                decoded.append({
                    'orig_question': orig_item.orig["question"], 
                    'model_output': model_output,
                    'inferred_code': inferred_code,
                    'score': beam.score,
                    **({
                        'choice_history': beam.choice_history,
                        'score_history': beam.score_history,
                    } if output_history else {})})

            output.write(
                json.dumps({
                    'index': i,
                    'beams': decoded,
                }) + '\n')
            output.flush()


    def _debug(self, model, sliced_data, output):
        for i, item in enumerate(tqdm.tqdm(sliced_data)):
            (_, history), = model.compute_loss([item], debug=True)
            output.write(
                    json.dumps({
                        'index': i,
                        'history': history,
                    }) + '\n')
            output.flush()

    def _visualize_attention(self, model, beam_size, output_history, sliced_data, res1file, res2file, res3file, output):
        res1 = json.load(open(res1file, 'r'))
        res1 = res1['per_item']
        res2 = json.load(open(res2file, 'r'))
        res2 = res2['per_item']
        res3 = json.load(open(res3file, 'r'))
        res3 = res3['per_item']
        interest_cnt = 0
        cnt = 0
        for i, item in enumerate(tqdm.tqdm(sliced_data)):
        
            if res1[i]['hardness'] != 'extra':
                continue
        
            cnt += 1
            if (res1[i]['exact'] == 0) and (res2[i]['exact'] == 0) and (res3[i]['exact'] == 0):
                continue
            interest_cnt += 1
            '''
            print('sample index: ')
            print(i)
            beams = beam_search.beam_search(
                model, item, beam_size=beam_size, max_steps=1000, visualize_flag=True)
            entry = item.orig
            print('ground truth SQL:')
            print(entry['query_toks'])
            print('prediction:')
            print(res2[i])
            decoded = []
            for beam in beams:
                model_output, inferred_code = beam.inference_state.finalize()

                decoded.append({
                    'model_output': model_output,
                    'inferred_code': inferred_code,
                    'score': beam.score,
                    **({
                        'choice_history': beam.choice_history,
                        'score_history': beam.score_history,
                    } if output_history else {})})

            output.write(
                json.dumps({
                    'index': i,
                    'beams': decoded,
                }) + '\n')
            output.flush()
            '''
        print(interest_cnt * 1.0 / cnt)


def add_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument('--logdir', required=True)
    parser.add_argument('--config', required=True)
    parser.add_argument('--config-args')

    parser.add_argument('--step', type=int)
    parser.add_argument('--section', required=True)
    parser.add_argument('--output', required=True)
    parser.add_argument('--beam-size', required=True, type=int)
    parser.add_argument('--output-history', action='store_true')
    parser.add_argument('--limit', type=int)
    parser.add_argument('--mode', default='infer', choices=['infer', 'debug', 'visualize_attention'])
    parser.add_argument('--use_heuristic', action='store_true')
    parser.add_argument('--res1', default='outputs/glove-sup-att-1h-0/outputs.json')
    parser.add_argument('--res2', default='outputs/glove-sup-att-1h-1/outputs.json')
    parser.add_argument('--res3', default='outputs/glove-sup-att-1h-2/outputs.json')
    args = parser.parse_args()
    return args

def main(args):
    if args.config_args:
        config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args}))
    else:
        config = json.loads(_jsonnet.evaluate_file(args.config))

    if 'model_name' in config:
        args.logdir = os.path.join(args.logdir, config['model_name'])

    output_path = args.output.replace('__LOGDIR__', args.logdir)
    if os.path.exists(output_path):
        print('Output file {} already exists'.format(output_path))
        sys.exit(1)

    inferer = Inferer(config)
    model = inferer.load_model(args.logdir, args.step)
    inferer.infer(model, output_path, args)


if __name__ == '__main__':
    args = add_parser()
    main(args)