File size: 11,269 Bytes
d758c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import argparse
import collections
import datetime
import json
import os

import _jsonnet
import attr
import torch

# noinspection PyUnresolvedReferences
from seq2struct import ast_util
# noinspection PyUnresolvedReferences
from seq2struct import datasets
# noinspection PyUnresolvedReferences
from seq2struct import models
# noinspection PyUnresolvedReferences
from seq2struct import optimizers

from seq2struct.utils import registry
from seq2struct.utils import random_state
from seq2struct.utils import saver as saver_mod

# noinspection PyUnresolvedReferences
from seq2struct.utils import vocab


@attr.s
class TrainConfig:
    eval_every_n = attr.ib(default=100)
    report_every_n = attr.ib(default=100)
    save_every_n = attr.ib(default=100)
    keep_every_n = attr.ib(default=1000)

    batch_size = attr.ib(default=32)
    eval_batch_size = attr.ib(default=32)
    max_steps = attr.ib(default=100000)
    num_eval_items = attr.ib(default=None)
    eval_on_train = attr.ib(default=True)
    eval_on_val = attr.ib(default=True)

    # Seed for RNG used in shuffling the training data.
    data_seed = attr.ib(default=None)
    # Seed for RNG used in initializing the model.
    init_seed = attr.ib(default=None)
    # Seed for RNG used in computing the model's training loss.
    # Only relevant with internal randomness in the model, e.g. with dropout.
    model_seed = attr.ib(default=None)

    num_batch_accumulated = attr.ib(default=1)
    clip_grad = attr.ib(default=None)


class Logger:
    def __init__(self, log_path=None, reopen_to_flush=False):
        self.log_file = None
        self.reopen_to_flush = reopen_to_flush
        if log_path is not None:
            os.makedirs(os.path.dirname(log_path), exist_ok=True)
            self.log_file = open(log_path, 'a+')

    def log(self, msg):
        formatted = '[{}] {}'.format(
            datetime.datetime.now().replace(microsecond=0).isoformat(),
            msg)
        print(formatted)
        if self.log_file:
            self.log_file.write(formatted + '\n')
            if self.reopen_to_flush:
                log_path = self.log_file.name
                self.log_file.close()
                self.log_file = open(log_path, 'a+')
            else:
                self.log_file.flush()

class Trainer:
    def __init__(self, logger, config):
        if torch.cuda.is_available():
            self.device = torch.device('cuda')
        else:
            self.device = torch.device('cpu')

        self.logger = logger
        self.train_config = registry.instantiate(TrainConfig, config['train'])
        self.data_random = random_state.RandomContext(self.train_config.data_seed)
        self.model_random = random_state.RandomContext(self.train_config.model_seed)

        self.init_random = random_state.RandomContext(self.train_config.init_seed)
        with self.init_random:
            # 0. Construct preprocessors
            self.model_preproc = registry.instantiate(
                registry.lookup('model', config['model']).Preproc,
                config['model'],
                unused_keys=('name',))
            self.model_preproc.load()

            # 1. Construct model
            self.model = registry.construct('model', config['model'],
                    unused_keys=('encoder_preproc', 'decoder_preproc'), preproc=self.model_preproc, device=self.device)
            self.model.to(self.device)

    def train(self, config, modeldir):
        # slight difference here vs. unrefactored train: The init_random starts over here. Could be fixed if it was important by saving random state at end of init
        with self.init_random:
            # We may be able to move optimizer and lr_scheduler to __init__ instead. Empirically it works fine. I think that's because saver.restore 
            # resets the state by calling optimizer.load_state_dict. 
            # But, if there is no saved file yet, I think this is not true, so might need to reset the optimizer manually?
            # For now, just creating it from scratch each time is safer and appears to be the same speed, but also means you have to pass in the config to train which is kind of ugly.

            # TODO: not nice
            if config["optimizer"].get("name", None) == 'bertAdamw':
                bert_params = list(self.model.encoder.bert_model.parameters())
                assert len(bert_params) > 0
                non_bert_params = []
                for name, _param in self.model.named_parameters():
                    if "bert" not in name:
                        non_bert_params.append(_param)
                assert len(non_bert_params) + len(bert_params) == len(list(self.model.parameters()))

                optimizer = registry.construct('optimizer', config['optimizer'], non_bert_params=non_bert_params, \
                    bert_params=bert_params)
                lr_scheduler = registry.construct( 'lr_scheduler',
                        config.get('lr_scheduler', {'name': 'noop'}),
                        param_groups=[optimizer.non_bert_param_group, \
                                optimizer.bert_param_group])
            else:
                optimizer = registry.construct('optimizer', config['optimizer'], params=self.model.parameters())
                lr_scheduler = registry.construct( 'lr_scheduler',
                        config.get('lr_scheduler', {'name': 'noop'}),
                        param_groups=optimizer.param_groups)

        # 2. Restore model parameters
        saver = saver_mod.Saver(
            {"model": self.model, "optimizer": optimizer}, keep_every_n=self.train_config.keep_every_n)
        last_step = saver.restore(modeldir, map_location=self.device)

        if "pretrain" in config and last_step == 0:
            pretrain_config = config["pretrain"]
            _path = pretrain_config["pretrained_path"]
            _step = pretrain_config["checkpoint_step"]
            pretrain_step = saver.restore(_path, step=_step, map_location=self.device, item_keys=["model"])
            saver.save(modeldir, pretrain_step) # for evaluating pretrained models
            last_step = pretrain_step

        # 3. Get training data somewhere
        with self.data_random:
            train_data = self.model_preproc.dataset('train')
            train_data_loader = self._yield_batches_from_epochs(
                torch.utils.data.DataLoader(
                    train_data,
                    batch_size=self.train_config.batch_size,
                    shuffle=True,
                    drop_last=True,
                    collate_fn=lambda x: x))
        train_eval_data_loader = torch.utils.data.DataLoader(
                train_data,
                batch_size=self.train_config.eval_batch_size,
                collate_fn=lambda x: x)

        val_data = self.model_preproc.dataset('val')
        val_data_loader = torch.utils.data.DataLoader(
                val_data,
                batch_size=self.train_config.eval_batch_size,
                collate_fn=lambda x: x)

        # 4. Start training loop
        with self.data_random:
            for batch in train_data_loader:
                # Quit if too long
                if last_step >= self.train_config.max_steps:
                    break

                # Evaluate model
                if last_step % self.train_config.eval_every_n == 0:
                    if self.train_config.eval_on_train:
                        self._eval_model(self.logger, self.model, last_step, train_eval_data_loader, 'train', num_eval_items=self.train_config.num_eval_items)
                    if self.train_config.eval_on_val:
                        self._eval_model(self.logger, self.model, last_step, val_data_loader, 'val', num_eval_items=self.train_config.num_eval_items)

                # Compute and apply gradient
                with self.model_random:
                    for _i in range(self.train_config.num_batch_accumulated):
                        if _i > 0:  batch = next(train_data_loader)
                        loss = self.model.compute_loss(batch) 
                        norm_loss = loss / self.train_config.num_batch_accumulated
                        norm_loss.backward()

                    if self.train_config.clip_grad:
                        torch.nn.utils.clip_grad_norm_(optimizer.bert_param_group["params"], \
                            self.train_config.clip_grad)
                    optimizer.step()
                    lr_scheduler.update_lr(last_step)
                    optimizer.zero_grad()

                # Report metrics
                if last_step % self.train_config.report_every_n == 0:
                    self.logger.log('Step {}: loss={:.4f}'.format(last_step, loss.item()))

                last_step += 1
                # Run saver
                if last_step % self.train_config.save_every_n == 0:
                    saver.save(modeldir, last_step)

            # Save final model
            saver.save(modeldir, last_step)



    @staticmethod
    def _yield_batches_from_epochs(loader):
        while True:
            for batch in loader:
                yield batch
    
    @staticmethod
    def _eval_model(logger, model, last_step, eval_data_loader, eval_section, num_eval_items=None):
        stats = collections.defaultdict(float)
        model.eval()
        with torch.no_grad():
          for eval_batch in eval_data_loader:
              batch_res = model.eval_on_batch(eval_batch)
              for k, v in batch_res.items():
                  stats[k] += v
              if num_eval_items and stats['total'] > num_eval_items:
                  break
        model.train()

        # Divide each stat by 'total'
        for k in stats:
            if k != 'total':
                stats[k] /= stats['total']
        if 'total' in stats:
            del stats['total']

        logger.log("Step {} stats, {}: {}".format(
            last_step, eval_section, ", ".join(
            "{} = {}".format(k, v) for k, v in stats.items())))

def add_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument('--logdir', required=True)
    parser.add_argument('--config', required=True)
    parser.add_argument('--config-args')
    args = parser.parse_args()
    return args

def main(args):
    if args.config_args:
        config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args}))
    else:
        config = json.loads(_jsonnet.evaluate_file(args.config))

    if 'model_name' in config:
        args.logdir = os.path.join(args.logdir, config['model_name'])

    # Initialize the logger
    reopen_to_flush = config.get('log', {}).get('reopen_to_flush')
    logger = Logger(os.path.join(args.logdir, 'log.txt'), reopen_to_flush)

    # Save the config info
    with open(os.path.join(args.logdir,
            'config-{}.json'.format(
            datetime.datetime.now().strftime('%Y%m%dT%H%M%S%Z'))), 'w', encoding='utf8') as f:			
        json.dump(config, f, sort_keys=True, indent=4, ensure_ascii=False)

    logger.log('Logging to {}'.format(args.logdir))

    # Construct trainer and do training
    trainer = Trainer(logger, config)
    trainer.train(config, modeldir=args.logdir)

if __name__ == '__main__':
    args = add_parser()
    main(args)