File size: 36,582 Bytes
d758c99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 |
import ast
import collections
import collections.abc
import enum
import itertools
import json
import os
import operator
import re
import copy
import random
import asdl
import attr
import pyrsistent
import entmax
import torch
import torch.nn.functional as F
from seq2struct import ast_util
from seq2struct import grammars
from seq2struct.models import abstract_preproc
from seq2struct.models import attention
from seq2struct.models import variational_lstm
from seq2struct.utils import registry
from seq2struct.utils import vocab
from seq2struct.utils import serialization
from seq2struct.models.nl2code.tree_traversal import TreeTraversal
from seq2struct.models.nl2code.train_tree_traversal import TrainTreeTraversal
from seq2struct.models.nl2code.infer_tree_traversal import InferenceTreeTraversal
def lstm_init(device, num_layers, hidden_size, *batch_sizes):
init_size = batch_sizes + (hidden_size, )
if num_layers is not None:
init_size = (num_layers, ) + init_size
init = torch.zeros(*init_size, device=device)
return (init, init)
def maybe_stack(items, dim=None):
to_stack = [item for item in items if item is not None]
if not to_stack:
return None
elif len(to_stack) == 1:
return to_stack[0].unsqueeze(dim)
else:
return torch.stack(to_stack, dim)
def accumulate_logprobs(d, keys_and_logprobs):
for key, logprob in keys_and_logprobs:
existing = d.get(key)
if existing is None:
d[key] = logprob
else:
d[key] = torch.logsumexp(
torch.stack((logprob, existing), dim=0),
dim=0)
def get_field_presence_info(ast_wrapper, node, field_infos):
present = []
for field_info in field_infos:
field_value = node.get(field_info.name)
is_present = field_value is not None and field_value != []
maybe_missing = field_info.opt or field_info.seq
is_builtin_type = field_info.type in ast_wrapper.primitive_types
if maybe_missing and is_builtin_type:
# TODO: make it posible to deal with "singleton?"
present.append(is_present and type(field_value).__name__)
elif maybe_missing and not is_builtin_type:
present.append(is_present)
elif not maybe_missing and is_builtin_type:
present.append(type(field_value).__name__)
elif not maybe_missing and not is_builtin_type:
assert is_present
present.append(True)
return tuple(present)
@attr.s
class NL2CodeDecoderPreprocItem:
tree = attr.ib()
orig_code = attr.ib()
class NL2CodeDecoderPreproc(abstract_preproc.AbstractPreproc):
def __init__(
self,
grammar,
save_path,
min_freq=3,
max_count=5000,
use_seq_elem_rules=False):
self.grammar = registry.construct('grammar', grammar)
self.ast_wrapper = self.grammar.ast_wrapper
self.vocab_path = os.path.join(save_path, 'dec_vocab.json')
self.observed_productions_path = os.path.join(save_path, 'observed_productions.json')
self.grammar_rules_path = os.path.join(save_path, 'grammar_rules.json')
self.data_dir = os.path.join(save_path, 'dec')
self.vocab_builder = vocab.VocabBuilder(min_freq, max_count)
self.use_seq_elem_rules = use_seq_elem_rules
self.items = collections.defaultdict(list)
self.sum_type_constructors = collections.defaultdict(set)
self.field_presence_infos = collections.defaultdict(set)
self.seq_lengths = collections.defaultdict(set)
self.primitive_types = set()
self.vocab = None
self.all_rules = None
self.rules_mask = None
def validate_item(self, item, section):
parsed = self.grammar.parse(item.code, section)
if parsed:
self.ast_wrapper.verify_ast(parsed)
return True, parsed
return section != 'train', None
def add_item(self, item, section, validation_info):
root = validation_info
if section == 'train':
for token in self._all_tokens(root):
self.vocab_builder.add_word(token)
self._record_productions(root)
self.items[section].append(
NL2CodeDecoderPreprocItem(
tree=root,
orig_code=item.code))
def clear_items(self):
self.items = collections.defaultdict(list)
def save(self):
os.makedirs(self.data_dir, exist_ok=True)
self.vocab = self.vocab_builder.finish()
self.vocab.save(self.vocab_path)
for section, items in self.items.items():
with open(os.path.join(self.data_dir, section + '.jsonl'), 'w') as f:
for item in items:
f.write(json.dumps(attr.asdict(item)) + '\n')
# observed_productions
self.sum_type_constructors = serialization.to_dict_with_sorted_values(
self.sum_type_constructors)
self.field_presence_infos = serialization.to_dict_with_sorted_values(
self.field_presence_infos, key=str)
self.seq_lengths = serialization.to_dict_with_sorted_values(
self.seq_lengths)
self.primitive_types = sorted(self.primitive_types)
with open(self.observed_productions_path, 'w') as f:
json.dump({
'sum_type_constructors': self.sum_type_constructors,
'field_presence_infos': self.field_presence_infos,
'seq_lengths': self.seq_lengths,
'primitive_types': self.primitive_types,
}, f, indent=2, sort_keys=True)
# grammar
self.all_rules, self.rules_mask = self._calculate_rules()
with open(self.grammar_rules_path, 'w') as f:
json.dump({
'all_rules': self.all_rules,
'rules_mask': self.rules_mask,
}, f, indent=2, sort_keys=True)
def load(self):
self.vocab = vocab.Vocab.load(self.vocab_path)
observed_productions = json.load(open(self.observed_productions_path))
self.sum_type_constructors = observed_productions['sum_type_constructors']
self.field_presence_infos = observed_productions['field_presence_infos']
self.seq_lengths = observed_productions['seq_lengths']
self.primitive_types = observed_productions['primitive_types']
grammar = json.load(open(self.grammar_rules_path))
self.all_rules = serialization.tuplify(grammar['all_rules'])
self.rules_mask = grammar['rules_mask']
def dataset(self, section):
return [
NL2CodeDecoderPreprocItem(**json.loads(line))
for line in open(os.path.join(self.data_dir, section + '.jsonl'))]
def _record_productions(self, tree):
queue = [(tree, False)]
while queue:
node, is_seq_elem = queue.pop()
node_type = node['_type']
# Rules of the form:
# expr -> Attribute | Await | BinOp | BoolOp | ...
# expr_seq_elem -> Attribute | Await | ... | Template1 | Template2 | ...
for type_name in [node_type] + node.get('_extra_types', []):
if type_name in self.ast_wrapper.constructors:
sum_type_name = self.ast_wrapper.constructor_to_sum_type[type_name]
if is_seq_elem and self.use_seq_elem_rules:
self.sum_type_constructors[sum_type_name + '_seq_elem'].add(type_name)
else:
self.sum_type_constructors[sum_type_name].add(type_name)
# Rules of the form:
# FunctionDef
# -> identifier name, arguments args
# | identifier name, arguments args, stmt* body
# | identifier name, arguments args, expr* decorator_list
# | identifier name, arguments args, expr? returns
# ...
# | identifier name, arguments args, stmt* body, expr* decorator_list, expr returns
assert node_type in self.ast_wrapper.singular_types
field_presence_info = get_field_presence_info(
self.ast_wrapper,
node,
self.ast_wrapper.singular_types[node_type].fields)
self.field_presence_infos[node_type].add(field_presence_info)
for field_info in self.ast_wrapper.singular_types[node_type].fields:
field_value = node.get(field_info.name, [] if field_info.seq else None)
to_enqueue = []
if field_info.seq:
# Rules of the form:
# stmt* -> stmt
# | stmt stmt
# | stmt stmt stmt
self.seq_lengths[field_info.type + '*'].add(len(field_value))
to_enqueue = field_value
else:
to_enqueue = [field_value]
for child in to_enqueue:
if isinstance(child, collections.abc.Mapping) and '_type' in child:
queue.append((child, field_info.seq))
else:
self.primitive_types.add(type(child).__name__)
def _calculate_rules(self):
offset = 0
all_rules = []
rules_mask = {}
# Rules of the form:
# expr -> Attribute | Await | BinOp | BoolOp | ...
# expr_seq_elem -> Attribute | Await | ... | Template1 | Template2 | ...
for parent, children in sorted(self.sum_type_constructors.items()):
assert not isinstance(children, set)
rules_mask[parent] = (offset, offset + len(children))
offset += len(children)
all_rules += [(parent, child) for child in children]
# Rules of the form:
# FunctionDef
# -> identifier name, arguments args
# | identifier name, arguments args, stmt* body
# | identifier name, arguments args, expr* decorator_list
# | identifier name, arguments args, expr? returns
# ...
# | identifier name, arguments args, stmt* body, expr* decorator_list, expr returns
for name, field_presence_infos in sorted(self.field_presence_infos.items()):
assert not isinstance(field_presence_infos, set)
rules_mask[name] = (offset, offset + len(field_presence_infos))
offset += len(field_presence_infos)
all_rules += [(name, presence) for presence in field_presence_infos]
# Rules of the form:
# stmt* -> stmt
# | stmt stmt
# | stmt stmt stmt
for seq_type_name, lengths in sorted(self.seq_lengths.items()):
assert not isinstance(lengths, set)
rules_mask[seq_type_name] = (offset, offset + len(lengths))
offset += len(lengths)
all_rules += [(seq_type_name, i) for i in lengths]
return tuple(all_rules), rules_mask
def _all_tokens(self, root):
queue = [root]
while queue:
node = queue.pop()
type_info = self.ast_wrapper.singular_types[node['_type']]
for field_info in reversed(type_info.fields):
field_value = node.get(field_info.name)
if field_info.type in self.grammar.pointers:
pass
elif field_info.type in self.ast_wrapper.primitive_types:
for token in self.grammar.tokenize_field_value(field_value):
yield token
elif isinstance(field_value, (list, tuple)):
queue.extend(field_value)
elif field_value is not None:
queue.append(field_value)
@attr.s
class TreeState:
node = attr.ib()
parent_field_type = attr.ib()
@registry.register('decoder', 'NL2Code')
class NL2CodeDecoder(torch.nn.Module):
Preproc = NL2CodeDecoderPreproc
def __init__(
self,
device,
preproc,
#
rule_emb_size=128,
node_embed_size=64,
# TODO: This should be automatically inferred from encoder
enc_recurrent_size=256,
recurrent_size=256,
dropout=0.,
desc_attn='bahdanau',
copy_pointer=None,
multi_loss_type='logsumexp',
sup_att=None,
use_align_mat=False,
use_align_loss=False,
enumerate_order=False,
loss_type="softmax"):
super().__init__()
self._device = device
self.preproc = preproc
self.ast_wrapper = preproc.ast_wrapper
self.terminal_vocab = preproc.vocab
self.rule_emb_size = rule_emb_size
self.node_emb_size = node_embed_size
self.enc_recurrent_size = enc_recurrent_size
self.recurrent_size = recurrent_size
self.rules_index = {v: idx for idx, v in enumerate(self.preproc.all_rules)}
self.use_align_mat = use_align_mat
self.use_align_loss = use_align_loss
self.enumerate_order = enumerate_order
if use_align_mat:
from seq2struct.models.spider import spider_dec_func
self.compute_align_loss = lambda *args: \
spider_dec_func.compute_align_loss(self, *args)
self.compute_pointer_with_align = lambda *args: \
spider_dec_func.compute_pointer_with_align(self, *args)
if self.preproc.use_seq_elem_rules:
self.node_type_vocab = vocab.Vocab(
sorted(self.preproc.primitive_types) +
sorted(self.ast_wrapper.custom_primitive_types) +
sorted(self.preproc.sum_type_constructors.keys()) +
sorted(self.preproc.field_presence_infos.keys()) +
sorted(self.preproc.seq_lengths.keys()),
special_elems=())
else:
self.node_type_vocab = vocab.Vocab(
sorted(self.preproc.primitive_types) +
sorted(self.ast_wrapper.custom_primitive_types) +
sorted(self.ast_wrapper.sum_types.keys()) +
sorted(self.ast_wrapper.singular_types.keys()) +
sorted(self.preproc.seq_lengths.keys()),
special_elems=())
self.state_update = variational_lstm.RecurrentDropoutLSTMCell(
input_size=self.rule_emb_size * 2 + self.enc_recurrent_size + self.recurrent_size + self.node_emb_size,
hidden_size=self.recurrent_size,
dropout=dropout)
self.attn_type = desc_attn
if desc_attn == 'bahdanau':
self.desc_attn = attention.BahdanauAttention(
query_size=self.recurrent_size,
value_size=self.enc_recurrent_size,
proj_size=50)
elif desc_attn == 'mha':
self.desc_attn = attention.MultiHeadedAttention(
h=8,
query_size=self.recurrent_size,
value_size=self.enc_recurrent_size)
elif desc_attn == 'mha-1h':
self.desc_attn = attention.MultiHeadedAttention(
h=1,
query_size=self.recurrent_size,
value_size=self.enc_recurrent_size)
elif desc_attn == 'sep':
self.question_attn = attention.MultiHeadedAttention(
h=1,
query_size=self.recurrent_size,
value_size=self.enc_recurrent_size)
self.schema_attn = attention.MultiHeadedAttention(
h=1,
query_size=self.recurrent_size,
value_size=self.enc_recurrent_size)
else:
# TODO: Figure out how to get right sizes (query, value) to module
self.desc_attn = desc_attn
self.sup_att = sup_att
self.rule_logits = torch.nn.Sequential(
torch.nn.Linear(self.recurrent_size, self.rule_emb_size),
torch.nn.Tanh(),
torch.nn.Linear(self.rule_emb_size, len(self.rules_index)))
self.rule_embedding = torch.nn.Embedding(
num_embeddings=len(self.rules_index),
embedding_dim=self.rule_emb_size)
self.gen_logodds = torch.nn.Linear(self.recurrent_size, 1)
self.terminal_logits = torch.nn.Sequential(
torch.nn.Linear(self.recurrent_size, self.rule_emb_size),
torch.nn.Tanh(),
torch.nn.Linear(self.rule_emb_size, len(self.terminal_vocab)))
self.terminal_embedding = torch.nn.Embedding(
num_embeddings=len(self.terminal_vocab),
embedding_dim=self.rule_emb_size)
if copy_pointer is None:
self.copy_pointer = attention.BahdanauPointer(
query_size=self.recurrent_size,
key_size=self.enc_recurrent_size,
proj_size=50)
else:
# TODO: Figure out how to get right sizes (query, key) to module
self.copy_pointer = copy_pointer
if multi_loss_type == 'logsumexp':
self.multi_loss_reduction = lambda logprobs: -torch.logsumexp(logprobs, dim=1)
elif multi_loss_type == 'mean':
self.multi_loss_reduction = lambda logprobs: -torch.mean(logprobs, dim=1)
self.pointers = torch.nn.ModuleDict()
self.pointer_action_emb_proj = torch.nn.ModuleDict()
for pointer_type in self.preproc.grammar.pointers:
self.pointers[pointer_type] = attention.ScaledDotProductPointer(
query_size=self.recurrent_size,
key_size=self.enc_recurrent_size)
self.pointer_action_emb_proj[pointer_type] = torch.nn.Linear(
self.enc_recurrent_size, self.rule_emb_size)
self.node_type_embedding = torch.nn.Embedding(
num_embeddings=len(self.node_type_vocab),
embedding_dim=self.node_emb_size)
# TODO batching
self.zero_rule_emb = torch.zeros(1, self.rule_emb_size, device=self._device)
self.zero_recurrent_emb = torch.zeros(1, self.recurrent_size, device=self._device)
if loss_type == "softmax":
self.xent_loss = torch.nn.CrossEntropyLoss(reduction='none')
elif loss_type == "entmax":
self.xent_loss = entmax.entmax15_loss
elif loss_type == "sparsemax":
self.xent_loss = entmax.sparsemax_loss
elif loss_type == "label_smooth":
self.xent_loss = self.label_smooth_loss
def label_smooth_loss(self, X, target, smooth_value=0.1):
if self.training:
logits = torch.log_softmax(X, dim=1)
size = X.size()[1]
one_hot = torch.full(X.size(), smooth_value / (size - 1)).to(X.device)
one_hot.scatter_(1, target.unsqueeze(0), 1 - smooth_value)
loss = F.kl_div(logits, one_hot, reduction="batchmean")
return loss.unsqueeze(0)
else:
return torch.nn.functional.cross_entropy(X, target, reduction="none")
@classmethod
def _calculate_rules(cls, preproc):
offset = 0
all_rules = []
rules_mask = {}
# Rules of the form:
# expr -> Attribute | Await | BinOp | BoolOp | ...
# expr_seq_elem -> Attribute | Await | ... | Template1 | Template2 | ...
for parent, children in sorted(preproc.sum_type_constructors.items()):
assert parent not in rules_mask
rules_mask[parent] = (offset, offset + len(children))
offset += len(children)
all_rules += [(parent, child) for child in children]
# Rules of the form:
# FunctionDef
# -> identifier name, arguments args
# | identifier name, arguments args, stmt* body
# | identifier name, arguments args, expr* decorator_list
# | identifier name, arguments args, expr? returns
# ...
# | identifier name, arguments args, stmt* body, expr* decorator_list, expr returns
for name, field_presence_infos in sorted(preproc.field_presence_infos.items()):
assert name not in rules_mask
rules_mask[name] = (offset, offset + len(field_presence_infos))
offset += len(field_presence_infos)
all_rules += [(name, presence) for presence in field_presence_infos]
# Rules of the form:
# stmt* -> stmt
# | stmt stmt
# | stmt stmt stmt
for seq_type_name, lengths in sorted(preproc.seq_lengths.items()):
assert seq_type_name not in rules_mask
rules_mask[seq_type_name] = (offset, offset + len(lengths))
offset += len(lengths)
all_rules += [(seq_type_name, i) for i in lengths]
return all_rules, rules_mask
def compute_loss(self, enc_input, example, desc_enc, debug):
if not self.enumerate_order or not self.training:
mle_loss = self.compute_mle_loss(enc_input, example, desc_enc, debug)
else:
mle_loss = self.compute_loss_from_all_ordering(enc_input, example, desc_enc, debug)
if self.use_align_loss:
align_loss = self.compute_align_loss(desc_enc, example)
return mle_loss + align_loss
return mle_loss
def compute_loss_from_all_ordering(self, enc_input, example, desc_enc, debug):
def get_permutations(node):
def traverse_tree(node):
nonlocal permutations
if isinstance(node, (list, tuple)):
p = itertools.permutations(range(len(node)))
permutations.append(list(p))
for child in node:
traverse_tree(child)
elif isinstance(node, dict):
for node_name in node:
traverse_tree(node[node_name])
permutations = []
traverse_tree(node)
return permutations
def get_perturbed_tree(node, permutation):
def traverse_tree(node, parent_type, parent_node):
if isinstance(node, (list, tuple)):
nonlocal permutation
p_node = [node[i] for i in permutation[0]]
parent_node[parent_type] = p_node
permutation = permutation[1:]
for child in node:
traverse_tree(child, None, None)
elif isinstance(node, dict):
for node_name in node:
traverse_tree(node[node_name], node_name, node)
node = copy.deepcopy(node)
traverse_tree(node, None, None)
return node
orig_tree = example.tree
permutations = get_permutations(orig_tree)
products = itertools.product(*permutations)
loss_list = []
for product in products:
tree = get_perturbed_tree(orig_tree, product)
example.tree = tree
loss = self.compute_mle_loss(enc_input, example, desc_enc)
loss_list.append(loss)
example.tree = orig_tree
loss_v = torch.stack(loss_list, 0)
return torch.logsumexp(loss_v, 0)
def compute_mle_loss(self, enc_input, example, desc_enc, debug=False):
traversal = TrainTreeTraversal(self, desc_enc, debug)
traversal.step(None)
queue = [
TreeState(
node=example.tree,
parent_field_type=self.preproc.grammar.root_type,
)
]
while queue:
item = queue.pop()
node = item.node
parent_field_type = item.parent_field_type
if isinstance(node, (list, tuple)):
node_type = parent_field_type + '*'
rule = (node_type, len(node))
rule_idx = self.rules_index[rule]
assert traversal.cur_item.state == TreeTraversal.State.LIST_LENGTH_APPLY
traversal.step(rule_idx)
if self.preproc.use_seq_elem_rules and parent_field_type in self.ast_wrapper.sum_types:
parent_field_type += '_seq_elem'
for i, elem in reversed(list(enumerate(node))):
queue.append(
TreeState(
node=elem,
parent_field_type=parent_field_type,
))
continue
if parent_field_type in self.preproc.grammar.pointers:
assert isinstance(node, int)
assert traversal.cur_item.state == TreeTraversal.State.POINTER_APPLY
pointer_map = desc_enc.pointer_maps.get(parent_field_type)
if pointer_map:
values = pointer_map[node]
if self.sup_att == '1h':
if len(pointer_map) == len(enc_input['columns']):
if self.attn_type != 'sep':
traversal.step(values[0], values[1:], node + len(enc_input['question']))
else:
traversal.step(values[0], values[1:], node)
else:
if self.attn_type != 'sep':
traversal.step(values[0], values[1:], node + len(enc_input['question']) + len(enc_input['columns']))
else:
traversal.step(values[0], values[1:], node + len(enc_input['columns']))
else:
traversal.step(values[0], values[1:])
else:
traversal.step(node)
continue
if parent_field_type in self.ast_wrapper.primitive_types:
# identifier, int, string, bytes, object, singleton
# - could be bytes, str, int, float, bool, NoneType
# - terminal tokens vocabulary is created by turning everything into a string (with `str`)
# - at decoding time, cast back to str/int/float/bool
field_type = type(node).__name__
field_value_split = self.preproc.grammar.tokenize_field_value(node) + [
vocab.EOS]
for token in field_value_split:
assert traversal.cur_item.state == TreeTraversal.State.GEN_TOKEN
traversal.step(token)
continue
type_info = self.ast_wrapper.singular_types[node['_type']]
if parent_field_type in self.preproc.sum_type_constructors:
# ApplyRule, like expr -> Call
rule = (parent_field_type, type_info.name)
rule_idx = self.rules_index[rule]
assert traversal.cur_item.state == TreeTraversal.State.SUM_TYPE_APPLY
extra_rules = [
self.rules_index[parent_field_type, extra_type]
for extra_type in node.get('_extra_types', [])]
traversal.step(rule_idx, extra_rules)
if type_info.fields:
# ApplyRule, like Call -> expr[func] expr*[args] keyword*[keywords]
# Figure out which rule needs to be applied
present = get_field_presence_info(self.ast_wrapper, node, type_info.fields)
rule = (node['_type'], tuple(present))
rule_idx = self.rules_index[rule]
assert traversal.cur_item.state == TreeTraversal.State.CHILDREN_APPLY
traversal.step(rule_idx)
# reversed so that we perform a DFS in left-to-right order
for field_info in reversed(type_info.fields):
if field_info.name not in node:
continue
queue.append(
TreeState(
node=node[field_info.name],
parent_field_type=field_info.type,
))
loss = torch.sum(torch.stack(tuple(traversal.loss), dim=0), dim=0)
if debug:
return loss, [attr.asdict(entry) for entry in traversal.history]
else:
return loss
def begin_inference(self, desc_enc, example):
traversal = InferenceTreeTraversal(self, desc_enc, example)
choices = traversal.step(None)
return traversal, choices
def _desc_attention(self, prev_state, desc_enc):
# prev_state shape:
# - h_n: batch (=1) x emb_size
# - c_n: batch (=1) x emb_size
query = prev_state[0]
if self.attn_type != 'sep':
return self.desc_attn(query, desc_enc.memory, attn_mask=None)
else:
question_context, question_attention_logits = self.question_attn(query, desc_enc.question_memory)
schema_context, schema_attention_logits = self.schema_attn(query, desc_enc.schema_memory)
return question_context + schema_context, schema_attention_logits
def _tensor(self, data, dtype=None):
return torch.tensor(data, dtype=dtype, device=self._device)
def _index(self, vocab, word):
return self._tensor([vocab.index(word)])
def _update_state(
self,
node_type,
prev_state,
prev_action_emb,
parent_h,
parent_action_emb,
desc_enc):
# desc_context shape: batch (=1) x emb_size
desc_context, attention_logits = self._desc_attention(prev_state, desc_enc)
if self.visualize_flag:
attention_weights = F.softmax(attention_logits, dim = -1)
print(attention_weights)
# node_type_emb shape: batch (=1) x emb_size
node_type_emb = self.node_type_embedding(
self._index(self.node_type_vocab, node_type))
state_input = torch.cat(
(
prev_action_emb, # a_{t-1}: rule_emb_size
desc_context, # c_t: enc_recurrent_size
parent_h, # s_{p_t}: recurrent_size
parent_action_emb, # a_{p_t}: rule_emb_size
node_type_emb, # n_{f-t}: node_emb_size
),
dim=-1)
new_state = self.state_update(
# state_input shape: batch (=1) x (emb_size * 5)
state_input, prev_state)
return new_state, attention_logits
def apply_rule(
self,
node_type,
prev_state,
prev_action_emb,
parent_h,
parent_action_emb,
desc_enc):
new_state, attention_logits = self._update_state(
node_type, prev_state, prev_action_emb, parent_h, parent_action_emb, desc_enc)
# output shape: batch (=1) x emb_size
output = new_state[0]
# rule_logits shape: batch (=1) x num choices
rule_logits = self.rule_logits(output)
return output, new_state, rule_logits
def rule_infer(self, node_type, rule_logits):
rule_logprobs = torch.nn.functional.log_softmax(rule_logits, dim=-1)
rules_start, rules_end = self.preproc.rules_mask[node_type]
# TODO: Mask other probabilities first?
return list(zip(
range(rules_start, rules_end),
rule_logprobs[0, rules_start:rules_end]))
def gen_token(
self,
node_type,
prev_state,
prev_action_emb,
parent_h,
parent_action_emb,
desc_enc):
new_state, attention_logits = self._update_state(
node_type, prev_state, prev_action_emb, parent_h, parent_action_emb, desc_enc)
# output shape: batch (=1) x emb_size
output = new_state[0]
# gen_logodds shape: batch (=1)
gen_logodds = self.gen_logodds(output).squeeze(1)
return new_state, output, gen_logodds
def gen_token_loss(
self,
output,
gen_logodds,
token,
desc_enc):
# token_idx shape: batch (=1), LongTensor
token_idx = self._index(self.terminal_vocab, token)
# action_emb shape: batch (=1) x emb_size
action_emb = self.terminal_embedding(token_idx)
# +unk, +in desc: copy
# +unk, -in desc: gen (an unk token)
# -unk, +in desc: copy, gen
# -unk, -in desc: gen
# gen_logodds shape: batch (=1)
desc_locs = desc_enc.find_word_occurrences(token)
if desc_locs:
# copy: if the token appears in the description at least once
# copy_loc_logits shape: batch (=1) x desc length
copy_loc_logits = self.copy_pointer(output, desc_enc.memory)
copy_logprob = (
# log p(copy | output)
# shape: batch (=1)
torch.nn.functional.logsigmoid(-gen_logodds) -
# xent_loss: -log p(location | output)
# TODO: sum the probability of all occurrences
# shape: batch (=1)
self.xent_loss(copy_loc_logits, self._tensor(desc_locs[0:1])))
else:
copy_logprob = None
# gen: ~(unk & in desc), equivalent to ~unk | ~in desc
if token in self.terminal_vocab or copy_logprob is None:
token_logits = self.terminal_logits(output)
# shape:
gen_logprob = (
# log p(gen | output)
# shape: batch (=1)
torch.nn.functional.logsigmoid(gen_logodds) -
# xent_loss: -log p(token | output)
# shape: batch (=1)
self.xent_loss(token_logits, token_idx))
else:
gen_logprob = None
# loss should be -log p(...), so negate
loss_piece = -torch.logsumexp(
maybe_stack([copy_logprob, gen_logprob], dim=1),
dim=1)
return loss_piece
def token_infer(self, output, gen_logodds, desc_enc):
# Copy tokens
# log p(copy | output)
# shape: batch (=1)
copy_logprob = torch.nn.functional.logsigmoid(-gen_logodds)
copy_loc_logits = self.copy_pointer(output, desc_enc.memory)
# log p(loc_i | copy, output)
# shape: batch (=1) x seq length
copy_loc_logprobs = torch.nn.functional.log_softmax(copy_loc_logits, dim=-1)
# log p(loc_i, copy | output)
copy_loc_logprobs += copy_logprob
log_prob_by_word = {}
# accumulate_logprobs is needed because the same word may appear
# multiple times in desc_enc.words.
accumulate_logprobs(
log_prob_by_word,
zip(desc_enc.words, copy_loc_logprobs.squeeze(0)))
# Generate tokens
# log p(~copy | output)
# shape: batch (=1)
gen_logprob = torch.nn.functional.logsigmoid(gen_logodds)
token_logits = self.terminal_logits(output)
# log p(v | ~copy, output)
# shape: batch (=1) x vocab size
token_logprobs = torch.nn.functional.log_softmax(token_logits, dim=-1)
# log p(v, ~copy| output)
# shape: batch (=1) x vocab size
token_logprobs += gen_logprob
accumulate_logprobs(
log_prob_by_word,
((self.terminal_vocab[idx], token_logprobs[0, idx]) for idx in range(token_logprobs.shape[1])))
return list(log_prob_by_word.items())
def compute_pointer(
self,
node_type,
prev_state,
prev_action_emb,
parent_h,
parent_action_emb,
desc_enc):
new_state, attention_logits = self._update_state(
node_type, prev_state, prev_action_emb, parent_h, parent_action_emb, desc_enc)
# output shape: batch (=1) x emb_size
output = new_state[0]
# pointer_logits shape: batch (=1) x num choices
pointer_logits = self.pointers[node_type](
output, desc_enc.pointer_memories[node_type])
return output, new_state, pointer_logits, attention_logits
def pointer_infer(self, node_type, logits):
logprobs = torch.nn.functional.log_softmax(logits, dim=-1)
return list(zip(
# TODO batching
range(logits.shape[1]),
logprobs[0])) |