File size: 12,332 Bytes
d758c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import copy
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import entmax

# Adapted from
# https://github.com/tensorflow/tensor2tensor/blob/0b156ac533ab53f65f44966381f6e147c7371eee/tensor2tensor/layers/common_attention.py
def relative_attention_logits(query, key, relation):
    # We can't reuse the same logic as tensor2tensor because we don't share relation vectors across the batch.
    # In this version, relation vectors are shared across heads.
    # query: [batch, heads, num queries, depth].
    # key: [batch, heads, num kvs, depth].
    # relation: [batch, num queries, num kvs, depth].

    # qk_matmul is [batch, heads, num queries, num kvs]
    qk_matmul = torch.matmul(query, key.transpose(-2, -1))

    # q_t is [batch, num queries, heads, depth]
    q_t = query.permute(0, 2, 1, 3)

    # r_t is [batch, num queries, depth, num kvs]
    r_t = relation.transpose(-2, -1)

    #   [batch, num queries, heads, depth]
    # * [batch, num queries, depth, num kvs]
    # = [batch, num queries, heads, num kvs]
    # For each batch and query, we have a query vector per head.
    # We take its dot product with the relation vector for each kv.
    q_tr_t_matmul = torch.matmul(q_t, r_t)

    # qtr_t_matmul_t is [batch, heads, num queries, num kvs]
    q_tr_tmatmul_t = q_tr_t_matmul.permute(0, 2, 1, 3)

    # [batch, heads, num queries, num kvs]
    return (qk_matmul + q_tr_tmatmul_t) / math.sqrt(query.shape[-1])

    # Sharing relation vectors across batch and heads:
    # query: [batch, heads, num queries, depth].
    # key: [batch, heads, num kvs, depth].
    # relation: [num queries, num kvs, depth].
    #
    # Then take
    # key reshaped
    #   [num queries, batch * heads, depth]
    # relation.transpose(-2, -1)
    #   [num queries, depth, num kvs]
    # and multiply them together.
    #
    # Without sharing relation vectors across heads:
    # query: [batch, heads, num queries, depth].
    # key: [batch, heads, num kvs, depth].
    # relation: [batch, heads, num queries, num kvs, depth].
    #
    # Then take
    # key.unsqueeze(3)
    #   [batch, heads, num queries, 1, depth]
    # relation.transpose(-2, -1)
    #   [batch, heads, num queries, depth, num kvs]
    # and multiply them together:
    #   [batch, heads, num queries, 1, depth]
    # * [batch, heads, num queries, depth, num kvs]
    # = [batch, heads, num queries, 1, num kvs]
    # and squeeze
    # [batch, heads, num queries, num kvs]

def relative_attention_values(weight, value, relation):
    # In this version, relation vectors are shared across heads.
    # weight: [batch, heads, num queries, num kvs].
    # value: [batch, heads, num kvs, depth].
    # relation: [batch, num queries, num kvs, depth].

    # wv_matmul is [batch, heads, num queries, depth]
    wv_matmul = torch.matmul(weight, value)

    # w_t is [batch, num queries, heads, num kvs]
    w_t = weight.permute(0, 2, 1, 3)

    #   [batch, num queries, heads, num kvs]
    # * [batch, num queries, num kvs, depth]
    # = [batch, num queries, heads, depth]
    w_tr_matmul = torch.matmul(w_t, relation)

    # w_tr_matmul_t is [batch, heads, num queries, depth]
    w_tr_matmul_t = w_tr_matmul.permute(0, 2, 1, 3)

    return wv_matmul + w_tr_matmul_t


# Adapted from The Annotated Transformer
def clones(module_fn, N):
    return nn.ModuleList([module_fn() for _ in range(N)])


def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    # return torch.matmul(p_attn, value), scores.squeeze(1).squeeze(1)
    return torch.matmul(p_attn, value), p_attn

def sparse_attention(query, key, value, alpha, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    if alpha == 2:
        p_attn = entmax.sparsemax(scores, -1)
    elif alpha == 1.5:
        p_attn = entmax.entmax15(scores, -1)
    else:
        raise NotImplementedError
    if dropout is not None:
        p_attn = dropout(p_attn)
    # return torch.matmul(p_attn, value), scores.squeeze(1).squeeze(1)
    return torch.matmul(p_attn, value), p_attn

# Adapted from The Annotated Transformers
class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(lambda: nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
        
    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        
        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]
        
        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)
        
        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        if query.dim() == 3:
            x = x.squeeze(1)
        return self.linears[-1](x)


# Adapted from The Annotated Transformer
def attention_with_relations(query, key, value, relation_k, relation_v, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = relative_attention_logits(query, key, relation_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn_orig = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn_orig)
    return relative_attention_values(p_attn, value, relation_v), p_attn_orig


class PointerWithRelations(nn.Module):
    def __init__(self, hidden_size, num_relation_kinds, dropout=0.2):
        super(PointerWithRelations, self).__init__()
        self.hidden_size = hidden_size
        self.linears = clones(lambda: nn.Linear(hidden_size, hidden_size), 3)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

        self.relation_k_emb = nn.Embedding(num_relation_kinds, self.hidden_size)
        self.relation_v_emb = nn.Embedding(num_relation_kinds, self.hidden_size)

    def forward(self, query, key, value, relation, mask=None):
        relation_k = self.relation_k_emb(relation)
        relation_v = self.relation_v_emb(relation)

        if mask is not None:
            mask = mask.unsqueeze(0)
        nbatches = query.size(0)

        query, key, value = \
            [l(x).view(nbatches, -1, 1, self.hidden_size).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]

        _, self.attn = attention_with_relations(
            query,
            key,
            value,
            relation_k,
            relation_v,
            mask=mask,
            dropout=self.dropout)

        return self.attn[0,0]

# Adapted from The Annotated Transformer
class MultiHeadedAttentionWithRelations(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttentionWithRelations, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(lambda: nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, relation_k, relation_v, mask=None):
        # query shape: [batch, num queries, d_model]
        # key shape: [batch, num kv, d_model]
        # value shape: [batch, num kv, d_model]
        # relations_k shape: [batch, num queries, num kv, (d_model // h)]
        # relations_v shape: [batch, num queries, num kv, (d_model // h)]
        # mask shape: [batch, num queries, num kv]
        if mask is not None:
            # Same mask applied to all h heads.
            # mask shape: [batch, 1, num queries, num kv]
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)

        # 1) Do all the linear projections in batch from d_model => h x d_k
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]

        # 2) Apply attention on all the projected vectors in batch.
        # x shape: [batch, heads, num queries, depth]
        x, self.attn = attention_with_relations(
            query,
            key,
            value,
            relation_k,
            relation_v,
            mask=mask,
            dropout=self.dropout)

        # 3) "Concat" using a view and apply a final linear.
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)


# Adapted from The Annotated Transformer
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"
    def __init__(self, layer, layer_size, N, tie_layers=False):
        super(Encoder, self).__init__()
        if tie_layers:
            self.layer = layer()
            self.layers = [self.layer for _ in range(N)]
        else:
            self.layers = clones(layer, N)
        self.norm = nn.LayerNorm(layer_size)
         
         # TODO initialize using xavier
        
    def forward(self, x, relation, mask):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, relation, mask)
        return self.norm(x)


# Adapted from The Annotated Transformer
class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = nn.LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))


# Adapted from The Annotated Transformer
class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, num_relation_kinds, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(lambda: SublayerConnection(size, dropout), 2)
        self.size = size

        self.relation_k_emb = nn.Embedding(num_relation_kinds, self.self_attn.d_k)
        self.relation_v_emb = nn.Embedding(num_relation_kinds, self.self_attn.d_k)

    def forward(self, x, relation, mask):
        "Follow Figure 1 (left) for connections."
        relation_k = self.relation_k_emb(relation)
        relation_v = self.relation_v_emb(relation)

        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, relation_k, relation_v, mask))
        return self.sublayer[1](x, self.feed_forward)


# Adapted from The Annotated Transformer
class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))