File size: 9,120 Bytes
d758c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import itertools
import operator

import attr
import numpy as np
import torch


def argsort(items, key=lambda x: x, reverse=False):
    # sorted_items: items sorted by key, descending
    # orig_to_sort: tuple of integers, satisfies the following:
    #   tuple(items[i] for i in orig_to_sort) == sorted_items
    #   items[orig_to_sort[i]] == sorted_items[i]
    # sort_to_orig: tuple of integers, satisfies the following:
    #   tuple(sorted_items[i] for i in sort_to_orig) == items
    #   sorted_items[sort_to_orig[i]] == items[i]
    orig_to_sort, sorted_items = zip(*sorted(
        enumerate(items), key=lambda x: key(x[1]), reverse=reverse))
    sort_to_orig = tuple(
        x[0] for x in sorted(
            enumerate(orig_to_sort), key=operator.itemgetter(1)))
    return sorted_items, sort_to_orig, orig_to_sort


def sort_lists_by_length(lists):
    # Returns the following 3 items:
    # - lists_sorted: lists sorted by length of each element, descending
    # - orig_to_sort: tuple of integers, satisfies the following:
    #     tuple(lists[i] for i in orig_to_sort) == lists_sorted
    #     lists[orig_to_sort[sort_idx]] == lists_sorted[sort_idx]
    # - sort_to_orig: list of integers, satisfies the following:
    #     [lists_sorted[i] for i in sort_to_orig] == lists
    #     lists_sorted[sort_to_orig[orig_idx]] == lists[orig_idx]
    return argsort(lists, key=len, reverse=True)


def batch_bounds_for_packing(lengths):
    '''Returns how many items in batch have length >= i at step i.
    Examples:
      [5] -> [1, 1, 1, 1, 1]
      [5, 5] -> [2, 2, 2, 2, 2]
      [5, 3] -> [2, 2, 2, 1, 1]
      [5, 4, 1, 1] -> [4, 2, 2, 2, 1]
    '''

    last_length = 0
    count = len(lengths)
    result = []
    for i, (length, group) in enumerate(itertools.groupby(reversed(lengths))):
        # TODO: Check that things don't blow up when some lengths are 0
        if i > 0 and length <= last_length:
            raise ValueError('lengths must be decreasing and positive')
        result.extend([count] * (length - last_length))
        count -= sum(1 for _ in group)
        last_length = length
    return result


def _make_packed_sequence(data, batch_sizes):
    return torch.nn.utils.rnn.PackedSequence(data,
        torch.LongTensor(batch_sizes))


@attr.s(frozen=True)
class PackedSequencePlus:
    ps = attr.ib()
    lengths = attr.ib()
    sort_to_orig = attr.ib(converter=np.array)
    orig_to_sort = attr.ib(converter=np.array)
    @lengths.validator
    def descending(self, attribute, value):
        for x, y in zip(value, value[1:]):
            if not x >= y:
                raise ValueError('Lengths are not descending: {}'.format(value))
    
    def __attrs_post_init__(self):
        self.__dict__['cum_batch_sizes'] = np.cumsum([0] + self.ps.batch_sizes[:-1].tolist()).astype(np.int_)

    def apply(self, fn):
        return attr.evolve(self, ps=torch.nn.utils.rnn.PackedSequence(
                fn(self.ps.data), self.ps.batch_sizes))

    def with_new_ps(self, ps):
        return attr.evolve(self, ps=ps)

    def pad(self, batch_first, others_to_unsort=(), padding_value=0.0):
        padded, seq_lengths = torch.nn.utils.rnn.pad_packed_sequence(
            self.ps, batch_first=batch_first, padding_value=padding_value)
        results = padded[
            self.sort_to_orig], [seq_lengths[i] for i in self.sort_to_orig]
        return results + tuple(t[self.sort_to_orig] for t in others_to_unsort)

    def cuda(self):
        if self.ps.data.is_cuda:
            return self
        return self.apply(lambda d: d.cuda())

    def raw_index(self, orig_batch_idx, seq_idx):
        result = np.take(self.cum_batch_sizes, seq_idx) + np.take(
                self.sort_to_orig, orig_batch_idx)
        if self.ps.data is not None:
            assert np.all(result < len(self.ps.data))
        return result

    def select(self, orig_batch_idx, seq_idx=None):
        if seq_idx is None:
            return self.ps.data[
                self.raw_index(orig_batch_idx, range(self.lengths[self.sort_to_orig[orig_batch_idx]]))]
        return self.ps.data[self.raw_index(orig_batch_idx, seq_idx)]
      
    def select_subseq(self, orig_batch_indices):
        lengths = [self.lengths[self.sort_to_orig[i]] for i in
          orig_batch_indices]
        return self.from_gather(
            lengths=lengths,
            map_index=self.raw_index,
            gather_from_indices=lambda indices:
            self.ps.data[torch.LongTensor(indices)])

    def orig_index(self, raw_idx):
        seq_idx = np.searchsorted(
                self.cum_batch_sizes, raw_idx, side='right') - 1
        batch_idx = raw_idx - self.cum_batch_sizes[seq_idx]
        orig_batch_idx = self.sort_to_orig[batch_idx]
        return orig_batch_idx, seq_idx

    def orig_batch_indices(self):
        result = []
        for bs in self.ps.batch_sizes:
            result.extend(self.orig_to_sort[:bs])
        return np.array(result)

    def orig_lengths(self):
        for sort_idx in self.sort_to_orig:
            yield self.lengths[sort_idx]

    def expand(self, k):
        # Conceptually, this function does the following:
        #   Input: d1 x ...
        #   Output: d1 * k x ... where
        #     out[0] = out[1] = ... out[k],
        #     out[k + 0] = out[k + 1] = ... out[k + k],
        #   and so on.
        v = self.ps.data
        ps_data = v.unsqueeze(1).repeat(1, k, *(
            [1] * (v.dim() - 1))).view(-1, *v.shape[1:])
        batch_sizes = (np.array(self.ps.batch_sizes) * k).tolist()
        lengths = np.repeat(self.lengths, k).tolist()
        sort_to_orig = [
            exp_i for i in self.sort_to_orig for exp_i in range(i * k, i * k + k)
        ]
        orig_to_sort = [
            exp_i for i in self.orig_to_sort for exp_i in range(i * k, i * k + k)
        ]
        return PackedSequencePlus(
                _make_packed_sequence(ps_data, batch_sizes),
                lengths, sort_to_orig, orig_to_sort)
    
    @classmethod
    def from_lists(cls, lists, item_shape, device, item_to_tensor):
        # result = tensor_type(sum(len(lst) for lst in lists), *item_shape)
        result_list = []

        sorted_lists, sort_to_orig, orig_to_sort = sort_lists_by_length(lists)
        lengths = [len(lst) for lst in sorted_lists]
        batch_bounds = batch_bounds_for_packing(lengths)
        idx = 0
        for i, bound in enumerate(batch_bounds):
            for batch_idx, lst in enumerate(sorted_lists[:bound]):
                # item_to_tensor(lst[i], batch_idx, result[idx])
                embed = item_to_tensor(lst[i], batch_idx)
                result_list.append(embed)
                idx += 1

        result = torch.stack(result_list, 0)
        return cls(
                _make_packed_sequence(result, batch_bounds),
                lengths, sort_to_orig, orig_to_sort)
    
    @classmethod
    def from_gather(cls, lengths, map_index, gather_from_indices):
        sorted_lengths, sort_to_orig, orig_to_sort = argsort(lengths, reverse=True)
        batch_bounds = batch_bounds_for_packing(sorted_lengths)

        indices = []
        for seq_idx, bound in enumerate(batch_bounds):
            for batch_idx in orig_to_sort[:bound]:
                # batch_idx: index into batch, when sequences in batch are in unsorted order
                # seq_idx: index of item in sequence
                assert seq_idx < lengths[batch_idx]
                indices.append(map_index(batch_idx, seq_idx))
        result = gather_from_indices(indices)

        return cls(
                _make_packed_sequence(result, batch_bounds),
                sorted_lengths, sort_to_orig, orig_to_sort)

    @classmethod
    def cat_seqs(cls, items):
        # Check that all items have the same batch size
        batch_size = len(items[0].lengths)
        assert all(len(item.lengths) == batch_size for item in items[1:])

        # Get length of each sequence after concatenation
        unsorted_concat_lengths = np.zeros(batch_size, dtype=np.int)
        for item in items:
            unsorted_concat_lengths += list(item.orig_lengths())

        # For each sequence in the result, figure out which item each seq_idx belongs to
        concat_data = torch.cat([item.ps.data for item in items], dim=0)
        concat_data_base_indices = np.cumsum([0] + [item.ps.data.shape[0] for item in items])

        item_map_per_batch_item = []
        for batch_idx in range(batch_size):
            item_map_per_batch_item.append([
                (item_idx, item, i)
                for item_idx, item in enumerate(items)
                for i in range(item.lengths[item.sort_to_orig[batch_idx]])])
        
        def map_index(batch_idx, seq_idx):
            item_idx, item, seq_idx_within_item = item_map_per_batch_item[batch_idx][seq_idx]
            return concat_data_base_indices[item_idx] + item.raw_index(batch_idx, seq_idx_within_item)

        return cls.from_gather(
            lengths=unsorted_concat_lengths,
            map_index=map_index,
            gather_from_indices=lambda indices: concat_data[torch.LongTensor(indices)])