File size: 8,328 Bytes
d758c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from torch.utils.data.dataset import Dataset
from transformers.tokenization_utils import PreTrainedTokenizer
from tqdm import tqdm
import json
import random
import itertools
random.seed(3435)
import torch
from dataclasses import dataclass

label_mapping =  json.load(open("data/preprocessed_data/bart_parser_label_mapping_2.json"))

def pad_and_tensorize_sequence(sequences, padding_value):
  max_size = max([len(sequence) for sequence in sequences])
  padded_sequences = []
  for sequence in sequences:
    padded_sequence = sequence + [padding_value] * (max_size - len(sequence))
    padded_sequences.append(padded_sequence)
  return torch.tensor(padded_sequences, dtype=torch.long)

class ColumnInferringDataset(Dataset):
  def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, local_rank=-1):
    self.examples = []
    with open(file_path, encoding="utf-8") as f:
      for line in tqdm(f):
        example = json.loads(line)
        # header = example["header"]
        # table_value = example["table"]
        # table_name = example["table_name"]
        # column_type = example["column_type"]
        # caption = example["caption"]
        self.examples.append(example)

  def __len__(self):
    return len(self.examples)

  def __getitem__(self, i):
    return self.examples[i]

@dataclass
class DataCollatorForColumnInferring:
  tokenizer: PreTrainedTokenizer
  keywords = label_mapping["keyword"]
  label_padding_id = label_mapping["keyword"].index(label_mapping["label_padding_token"])
  label_eos_id = label_mapping["keyword"].index(label_mapping["label_eos_token"])
  label_bos_id = label_mapping["keyword"].index(label_mapping["label_bos_token"])
  def collate_batch(self, examples):
    training_examples = self.create_example(examples)
    training_tensors = self.create_tensor(training_examples)
    batched_training_examples = self.create_batch(training_tensors)
    return batched_training_examples

  def create_batch(self, examples):
    input_ids_sequences = [example["input_ids"] for example in examples]
    column_spans_sequences = [example["column_spans"] for example in examples]
    label_ids_sequences = [example["output_ids"] for example in examples]
    copy_span = [example["copy_span"] for example in examples]

    padded_input_ids_tensor = pad_and_tensorize_sequence(
      input_ids_sequences, padding_value=self.tokenizer.pad_token_id)
    padded_column_spans_tensor = pad_and_tensorize_sequence(
      column_spans_sequences, padding_value=(0, 1))
    label_ids_tensor = pad_and_tensorize_sequence(
      label_ids_sequences, padding_value=self.label_padding_id)

    return {
      "input_ids": padded_input_ids_tensor,
      "column_spans": padded_column_spans_tensor,
      "copy_span": copy_span,
      "labels": label_ids_tensor,
      "input_padding_id": self.tokenizer.pad_token_id,
      "label_padding_id": self.label_padding_id,
      "label_eos_id": self.label_eos_id,
      "label_bos_id": self.label_bos_id
    }

  def create_tensor(self, examples):
    processed_examples = []
    for example in examples:
      input_seq = example["input"]
      input_words = [self.tokenizer.tokenize(word, add_prefix_space=True) for word in input_seq]
      input_tokens = list(itertools.chain.from_iterable(input_words))
      columns = example["columns"]
      column_start = len(input_tokens) + 2 # add cls and sep
      column_tokens = []
      column_spans = []
      for column in columns:
        column_text = column.replace("_", " ").replace(".", " ")
        tokens = self.tokenizer.tokenize(column_text, add_prefix_space=True)
        column_tokens.extend(tokens)
        column_tokens.append(self.tokenizer.sep_token)
        column_spans.append((column_start, column_start + len(tokens)))
        column_start += len(tokens) + 1

      output_seq = example["output"]
      output_ids = []
      column_count = -1
      # for idx, token in enumerate(output_seq):
      #   if token in columns:
      #     output_ids.append(len(self.keywords) + len(input_tokens) + columns.index(token))
      #     column_count += 1
      #   elif token in self.keywords:
      #     output_ids.append(self.keywords.index(token))
      #   else:
      #     # It should match the column_count-th value in the input_word_ids
      #     base = len(list(itertools.chain.from_iterable(input_words[:column_count]))) + len(self.keywords)
      #     for i in range(len(input_words[column_count])):
      #       output_ids.append(base + i)
      for idx, token in enumerate(output_seq):
        if token in columns:
          output_ids.append(len(self.keywords) + columns.index(token))
          column_count += 1
        elif token in self.keywords:
          output_ids.append(self.keywords.index(token))
        else:
          raise NotImplementedError()
      output_ids = [self.label_bos_id] + output_ids + [self.label_eos_id]
      input_ids = self.tokenizer.convert_tokens_to_ids(
        [self.tokenizer.cls_token] + input_tokens + [self.tokenizer.sep_token] + column_tokens)
      if len(input_ids) > 800:
        continue
      processed_examples.append(
        {
          "input_ids": input_ids,
          "output_ids": output_ids,
          "column_spans": column_spans,
          "copy_span": (1, len(input_tokens) + 1),
          "input_tokens": [self.tokenizer.cls_token] + input_tokens + [self.tokenizer.sep_token] + column_tokens,
        })

    return processed_examples



  def create_example(self, examples):
    # We will mix several examples together.
    training_examples = []
    batch_start = 0
    while batch_start < len(examples):
      samples = examples[batch_start:batch_start + 2]
      columns = list(itertools.chain.from_iterable([sample["header"] for sample in samples]))
      augmented_columns = list(itertools.chain.from_iterable([sample["augmented_columns"] for sample in samples]))
      column_idx_to_sample_ids = list(
        itertools.chain.from_iterable([[idx] * len(sample["header"]) for idx, sample in enumerate(samples)]))
      column_idx_to_column_seq = list(
        itertools.chain.from_iterable(list(range(len(sample["header"]))) for sample in samples))
      column_size = len(columns)
      selected_columns = random.sample(range(column_size), int(column_size * 0.4))
      batch_start += 3

      processed_example = []
      column_candidates = []
      for column_idx in range(column_size):
        sample_idx = column_idx_to_sample_ids[column_idx]
        table_name = samples[sample_idx]["table_name"]
        column_candidates.append("{}.{}".format(table_name.lower().replace(" ", "_"),
                                                columns[column_idx].lower().replace(" ", "_")))

        if column_idx in selected_columns:

          if random.random() < 0.3:
            column_text = augmented_columns[column_idx].lower()
          else:
            column_text = columns[column_idx].lower()
          processed_example.append(("column", column_text, table_name, columns[column_idx]))
        else:
          column_seq = column_idx_to_column_seq[column_idx]
          row_size = len(samples[sample_idx]["table"])
          value = ""
          try_count = 0
          while not (len(value) > 0 and value != "-"):
            selected_row = random.choice(range(row_size))
            value = samples[sample_idx]["table"][selected_row][column_seq]
            if try_count > 5:
              break
            try_count += 1
          if len(value) > 0 and value != "-":
            processed_example.append(("value", value, table_name, columns[column_idx]))

      random.shuffle(processed_example)
      input_sequence, output_sequence = [], []
      for item in processed_example:
        if item[0] == "column":
          input_sequence.append(item[1])
          output_sequence.append(item[2].lower().replace(" ", "_") + "." + item[3].lower().replace(" ", "_"))
        else:
          input_sequence.append(item[1])
          output_sequence.append(item[2].lower().replace(" ", "_") + "." + item[3].lower().replace(" ", "_"))
          # output_sequence.append("=")
          # output_sequence.append(item[1])
      training_examples.append({
        "input": input_sequence,
        "output": output_sequence,
        "columns": column_candidates
      })
    return training_examples