File size: 43,954 Bytes
d758c99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 |
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BART model, ported from the fairseq repo."""
import logging
import math
import random
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from transformers.activations import ACT2FN
from transformers.configuration_bart import BartConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_callable
from transformers.modeling_utils import PreTrainedModel
from relogic.logickit.dataflow.semtransparse.grammar.keywords import KEYWORDS
logger = logging.getLogger(__name__)
def create_position_ids_from_input_ids(input_ids, padding_idx):
""" Replace non-padding symbols with their position numbers. Position numbers begin at
padding_idx+1. Padding symbols are ignored. This is modified from fairseq's
`utils.make_positions`.
:param torch.Tensor x:
:return torch.Tensor:
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
return incremental_indices.long() + padding_idx
BART_PRETRAINED_MODEL_ARCHIVE_MAP = {
"facebook/bart-large": "https://cdn.huggingface.co/facebook/bart-large/pytorch_model.bin",
"facebook/bart-large-mnli": "https://cdn.huggingface.co/facebook/bart-large-mnli/pytorch_model.bin",
"facebook/bart-large-cnn": "https://cdn.huggingface.co/facebook/bart-large-cnn/pytorch_model.bin",
"facebook/bart-large-xsum": "https://cdn.huggingface.co/facebook/bart-large-xsum/pytorch_model.bin",
"facebook/mbart-large-en-ro": "https://cdn.huggingface.co/facebook/mbart-large-en-ro/pytorch_model.bin",
}
BART_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matters related to general usage and behavior.
Parameters:
config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
BART_GENERATION_EXAMPLE = r"""
Examples::
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
# see ``examples/summarization/bart/evaluate_cnn.py`` for a longer example
model = BartForConditionalGeneration.from_pretrained('bart-large-cnn')
tokenizer = BartTokenizer.from_pretrained('bart-large-cnn')
ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
inputs = tokenizer.batch_encode_plus([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
# Generate Summary
summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
"""
BART_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them.
Padding will be ignored by default should you provide it.
Indices can be obtained using :class:`transformers.BartTokenizer.encode(text)`.
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices in input_ids.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`, defaults to :obj:`None`):
Tuple consists of (`last_hidden_state`, `optional`: `hidden_states`, `optional`: `attentions`)
`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`) is a sequence of hidden-states at the output of the last layer of the encoder.
Used in the cross-attention of the decoder.
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`, defaults to :obj:`None`):
Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`, defaults to :obj:`None`):
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
If you want to change padding behavior, you should read :func:`~transformers.modeling_bart._prepare_decoder_inputs` and modify.
See diagram 1 in the paper for more info on the default strategy
"""
def batched_index_select(input, dim, index):
views = [input.shape[0]] + \
[1 if i != dim else -1 for i in range(1, len(input.shape))]
expanse = list(input.shape)
expanse[0] = -1
expanse[dim] = -1
index = index.view(views).expand(expanse)
return torch.gather(input, dim, index)
def invert_mask(attention_mask):
assert attention_mask.dim() == 2
return attention_mask.eq(0)
def _prepare_bart_decoder_inputs(
config, input_ids, pad_token_id, decoder_input_ids=None, decoder_padding_mask=None, causal_mask_dtype=torch.float32,
):
"""Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if
none are provided. This mimics the default behavior in fairseq. To override it pass in masks.
Note: this is not called during generation
"""
# pad_token_id = config.pad_token_id
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
bsz, tgt_len = decoder_input_ids.size()
if decoder_padding_mask is None:
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
else:
decoder_padding_mask = invert_mask(decoder_padding_mask)
causal_mask = torch.triu(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1).to(
dtype=causal_mask_dtype, device=decoder_input_ids.device
)
return decoder_input_ids, decoder_padding_mask, causal_mask
class PretrainedBartModel(PreTrainedModel):
config_class = BartConfig
base_model_prefix = "model"
pretrained_model_archive_map = BART_PRETRAINED_MODEL_ARCHIVE_MAP
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, SinusoidalPositionalEmbedding):
pass
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
def _make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
if shape_1 != shape2:
raise AssertionError("shape mismatch: {} != {}".format(shape_1, shape2))
def shift_tokens_right(input_ids, pad_token_id):
"""Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
prev_output_tokens = input_ids.clone()
index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = input_ids[:, :-1]
return prev_output_tokens
def make_padding_mask(input_ids, padding_idx=1):
"""True for pad tokens"""
padding_mask = input_ids.eq(padding_idx)
if not padding_mask.any():
padding_mask = None
return padding_mask
# Helper Modules
class EncoderLayer(nn.Module):
def __init__(self, config: BartConfig):
super().__init__()
self.embed_dim = config.d_model
self.output_attentions = config.output_attentions
self.self_attn = SelfAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout,
)
self.normalize_before = config.normalize_before
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(self, x, encoder_padding_mask):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
for t_tgt, t_src is excluded (or masked out), =0 means it is
included in attention
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
x, attn_weights = self.self_attn(
query=x, key=x, key_padding_mask=encoder_padding_mask, need_weights=self.output_attentions
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = F.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
if not self.normalize_before:
x = self.final_layer_norm(x)
return x, attn_weights
from relogic.pretrainkit.models.relationalsemparse.relational_transformer import RelationalTransformerUpdate
class RelationalBartEncoder(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer
is a :class:`EncoderLayer`.
Args:
config: BartConfig
"""
def __init__(self, config: BartConfig, embed_tokens):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
embed_dim = embed_tokens.embedding_dim
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.padding_idx = embed_tokens.padding_idx
self.max_source_positions = config.max_position_embeddings
# print("I am in Encoder padding_idx ", self.padding_idx)
self.embed_tokens = embed_tokens
if config.static_position_embeddings:
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings, embed_dim, self.padding_idx
)
else:
self.embed_positions = LearnedPositionalEmbedding(
config.max_position_embeddings, embed_dim, self.padding_idx,
)
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = LayerNorm(embed_dim) if config.normalize_embedding else nn.Identity()
# mbart has one extra layer_norm
self.layer_norm = LayerNorm(config.d_model) if config.normalize_before else None
num_heads = 8
hidden_size = 1024
num_layers = 8
self.relational_transformer = RelationalTransformerUpdate(
num_layers=num_layers,
num_heads=num_heads,
hidden_size=hidden_size,
sc_link=True,
cv_link=True)
# self.relational_transformer.load_state_dict(torch.load("data/params/rat_layer_bert.pt"))
self.use_relation_transformer = True
def forward(
self, input_ids, attention_mask, example_info_list
):
"""
Args:
input_ids (LongTensor): tokens in the source language of shape
`(batch, src_len)`
attention_mask (torch.LongTensor): indicating which indices are padding tokens.
Returns:
Tuple comprised of:
- **x** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *self.output_hidden_states:* is True.
- **all_attentions** (List[Tensor]): Attention weights for each layer.
During training might not be of length n_layers because of layer dropout.
"""
# check attention mask and invert
if attention_mask is not None:
attention_mask = invert_mask(attention_mask)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos, p_idx = self.embed_positions(input_ids)
# print("I am in Encoder ", p_idx)
x = inputs_embeds + embed_pos
x = self.layernorm_embedding(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
encoder_states, all_attentions = [], []
for encoder_layer in self.layers:
if self.output_hidden_states:
encoder_states.append(x)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
x, attn = encoder_layer(x, attention_mask)
if self.output_attentions:
all_attentions.append(attn)
if self.layer_norm:
x = self.layer_norm(x)
if self.output_hidden_states:
encoder_states.append(x)
# T x B x C -> B x T x C
encoder_states = [hidden_state.transpose(0, 1) for hidden_state in encoder_states]
x = x.transpose(0, 1)
# Apply relational transformer here
max_q_length = max([example_info["question_end"] - example_info["question_start"] for example_info in example_info_list])
max_column_length = max([len(example_info["column_start"]) for example_info in example_info_list])
max_table_length = max([len(example_info["table_start"]) for example_info in example_info_list])
batch_size, dim = x.size(0), x.size(-1)
batch_q_enc = x.new_zeros((batch_size, max_q_length, dim))
batch_q_enc_mask = x.new_zeros((batch_size, max_q_length))
batch_col_enc = x.new_zeros((batch_size, max_column_length, dim))
batch_col_enc_mask = x.new_zeros((batch_size, max_column_length))
batch_tab_enc = x.new_zeros((batch_size, max_table_length, dim))
batch_tab_enc_mask = x.new_zeros((batch_size, max_table_length))
for batch_idx, example_info in enumerate(example_info_list):
q_enc = x[batch_idx][example_info["question_start"]:example_info["question_end"]]
col_enc_start = x[batch_idx][example_info["column_start"]]
tab_enc_start = x[batch_idx][example_info["table_start"]]
col_enc_end = x[batch_idx][example_info["column_end"]-1] # exclusive
tab_enc_end = x[batch_idx][example_info["table_end"]-1]
col_enc = (col_enc_start + col_enc_end) / 2.0 # avg the first and last token
tab_enc = (tab_enc_start + tab_enc_end) / 2.0
if self.use_relation_transformer:
c_boundary = list(range(len(example_info["column_start"]) + 1))
t_boundary = list(range(len(example_info["table_start"]) + 1))
# why do we need this information
q_enc_new, c_enc_new, t_enc_new, _ = self.relational_transformer.forward_unbatched(
example_info,
q_enc.unsqueeze(1),
col_enc.unsqueeze(1),
c_boundary,
tab_enc.unsqueeze(1),
t_boundary)
# q_enc_new = (q_enc_new + q_enc) / 2.0
# c_enc_new = (c_enc_new + col_enc) / 2.0
# t_enc_new = (t_enc_new + tab_enc) / 2.0
else:
q_enc_new, c_enc_new, t_enc_new = q_enc, col_enc, tab_enc
batch_q_enc[batch_idx,:q_enc.size(0)] = q_enc_new
batch_q_enc_mask[batch_idx,:q_enc.size(0)] = 1
batch_col_enc[batch_idx, :col_enc.size(0)] = c_enc_new
batch_col_enc_mask[batch_idx, :col_enc.size(0)] = 1
batch_tab_enc[batch_idx, :tab_enc.size(0)] = t_enc_new
batch_tab_enc_mask[batch_idx, :tab_enc.size(0)] = 1
# return x, encoder_states, all_attentions
return ((batch_q_enc, batch_q_enc_mask),
(batch_col_enc, batch_col_enc_mask),
(batch_tab_enc, batch_tab_enc_mask)), encoder_states, all_attentions
# return ((x, attention_mask),
# (batch_col_enc, batch_col_enc_mask),
# (batch_tab_enc, batch_tab_enc_mask)), encoder_states, all_attentions
class DecoderLayer(nn.Module):
def __init__(self, config: BartConfig):
super().__init__()
self.embed_dim = config.d_model
self.output_attentions = config.output_attentions
self.self_attn = SelfAttention(
embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.normalize_before = config.normalize_before
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.encoder_attn = SelfAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
encoder_decoder_attention=True,
)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(
self,
x,
encoder_hidden_states,
encoder_attn_mask=None,
layer_state=None,
causal_mask=None,
decoder_padding_mask=None,
):
residual = x
if layer_state is None:
layer_state = {}
if self.normalize_before:
x = self.self_attn_layer_norm(x)
# Self Attention
x, self_attn_weights = self.self_attn(
query=x,
key=x,
layer_state=layer_state, # adds keys to layer state
key_padding_mask=decoder_padding_mask,
attn_mask=causal_mask,
need_weights=self.output_attentions,
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
# Cross attention
residual = x
assert self.encoder_attn.cache_key != self.self_attn.cache_key
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
x, _ = self.encoder_attn(
query=x,
key=encoder_hidden_states,
key_padding_mask=encoder_attn_mask,
layer_state=layer_state, # mutates layer state
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
# Fully Connected
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = F.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
if not self.normalize_before:
x = self.final_layer_norm(x)
return (
x,
self_attn_weights,
layer_state,
) # just self_attn weights for now, following t5, layer_state = cache for decoding
class BartDecoder(nn.Module):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer
is a :class:`DecoderLayer`.
Args:
config: BartConfig
embed_tokens (torch.nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig, embed_tokens: nn.Embedding):
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
# print("I am in Decoder, padding_idx ", self.padding_idx)
# self.padding_idx = 0
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
if config.static_position_embeddings:
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings, config.d_model, config.pad_token_id
)
else:
self.embed_positions = LearnedPositionalEmbedding(
config.max_position_embeddings, config.d_model, self.padding_idx,
)
self.layers = nn.ModuleList(
[DecoderLayer(config) for _ in range(config.decoder_layers)]
) # type: List[DecoderLayer]
self.layernorm_embedding = LayerNorm(config.d_model) if config.normalize_embedding else nn.Identity()
self.layer_norm = LayerNorm(config.d_model) if config.add_final_layer_norm else None
def forward(
self,
input_ids,
input_embed,
encoder_hidden_states,
encoder_padding_mask,
decoder_padding_mask,
decoder_causal_mask,
decoder_cached_states=None,
use_cache=False,
**unused
):
"""
Includes several features from "Jointly Learning to Align and
Translate with Transformer Models" (Garg et al., EMNLP 2019).
Args:
input_ids (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_hidden_states: output from the encoder, used for
encoder-side attention
encoder_padding_mask: for ignoring pad tokens
decoder_cached_states (dict or None): dictionary used for storing state during generation
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- hidden states
- attentions
"""
# check attention mask and invert
if encoder_padding_mask is not None:
encoder_padding_mask = invert_mask(encoder_padding_mask)
# embed positions
positions, p_idx = self.embed_positions(input_ids, use_cache=use_cache)
# print("I am in decoder, use_cache", use_cache, p_idx)
if use_cache:
input_ids = input_ids[:, -1:]
input_embed = input_embed[:, -1:]
positions = positions[:, -1:] # happens after we embed them
# assert input_ids.ne(self.padding_idx).any()
# x = self.embed_tokens(input_ids) * self.embed_scale
x = input_embed * self.embed_scale
x += positions
x = self.layernorm_embedding(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# Convert to Bart output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
# decoder layers
all_hidden_states = ()
all_self_attns = ()
next_decoder_cache = []
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if self.output_hidden_states:
all_hidden_states += (x,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
layer_state = decoder_cached_states[idx] if decoder_cached_states is not None else None
x, layer_self_attn, layer_past = decoder_layer(
x,
encoder_hidden_states,
encoder_attn_mask=encoder_padding_mask,
decoder_padding_mask=decoder_padding_mask,
layer_state=layer_state,
causal_mask=decoder_causal_mask,
)
if use_cache:
next_decoder_cache.append(layer_past.copy())
if self.layer_norm and (idx == len(self.layers) - 1): # last layer of mbart
x = self.layer_norm(x)
if self.output_attentions:
all_self_attns += (layer_self_attn,)
# Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
all_hidden_states = [hidden_state.transpose(0, 1) for hidden_state in all_hidden_states]
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
if use_cache:
# next_cache = ((encoder_hidden_states, encoder_padding_mask), next_decoder_cache)
next_cache = (next_decoder_cache, )
# The cache is more than we predefined.
else:
next_cache = None
return x, next_cache, all_hidden_states, list(all_self_attns)
def _reorder_buffer(attn_cache, new_order):
for k, input_buffer_k in attn_cache.items():
if input_buffer_k is not None:
attn_cache[k] = input_buffer_k.index_select(0, new_order)
return attn_cache
class SelfAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
encoder_decoder_attention=False, # otherwise self_attention
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.encoder_decoder_attention = encoder_decoder_attention
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"
def _shape(self, tensor, dim_0, bsz):
return tensor.contiguous().view(dim_0, bsz * self.num_heads, self.head_dim).transpose(0, 1)
def forward(
self,
query,
key: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
layer_state: Optional[Dict[str, Optional[Tensor]]] = None,
attn_mask: Optional[Tensor] = None,
need_weights=False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time(SeqLen) x Batch x Channel"""
static_kv: bool = self.encoder_decoder_attention
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
# get here for encoder decoder cause of static_kv
if layer_state is not None: # reuse k,v and encoder_padding_mask
saved_state = layer_state.get(self.cache_key, {})
if "prev_key" in saved_state:
# previous time steps are cached - no need to recompute key and value if they are static
if static_kv:
key = None
else:
saved_state = None
layer_state = {}
q = self.q_proj(query) * self.scaling
if static_kv:
if key is None:
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
k = self.k_proj(query)
v = self.v_proj(query)
q = self._shape(q, tgt_len, bsz)
if k is not None:
k = self._shape(k, -1, bsz)
if v is not None:
v = self._shape(v, -1, bsz)
if saved_state is not None:
k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)
# Update cache
layer_state[self.cache_key] = {
"prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
"prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
"prev_key_padding_mask": key_padding_mask if not static_kv else None,
}
assert k is not None
src_len = k.size(1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
assert key_padding_mask is None or key_padding_mask.size()[:2] == (bsz, src_len,)
if key_padding_mask is not None: # don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2)
attn_weights = attn_weights.masked_fill(reshaped, float("-inf"))
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training,)
assert v is not None
attn_output = torch.bmm(attn_probs, v)
assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
if need_weights:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
else:
attn_weights = None
return attn_output, attn_weights
def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
assert k is not None and v is not None
prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None)
key_padding_mask = self._cat_prev_key_padding_mask(
key_padding_mask, prev_key_padding_mask, bsz, k.size(1), static_kv
)
return k, v, key_padding_mask
@staticmethod
def _cat_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None:
if static_kv:
new_key_padding_mask = prev_key_padding_mask
else:
new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1)
elif key_padding_mask is not None:
filler = torch.zeros(
batch_size,
src_len - key_padding_mask.size(1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device,
)
new_key_padding_mask = torch.cat([filler, key_padding_mask], dim=1)
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
class BartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
# This can trivially be shared with RobertaClassificationHead
def __init__(
self, input_dim, inner_dim, num_classes, pooler_dropout,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, x):
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(
self, num_embeddings: int, embedding_dim: int, padding_idx: int,
):
# if padding_idx is specified then offset the embedding ids by
# this index and adjust num_embeddings appropriately
assert padding_idx is not None
num_embeddings += padding_idx + 1 # WHY?
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx)
def forward(self, input, use_cache=False):
"""Input is expected to be of size [bsz x seqlen]."""
if use_cache: # the position is our current step in the decoded sequence
pos = int(self.padding_idx + input.size(1))
positions = input.data.new(1, 1).fill_(pos)
else:
positions = create_position_ids_from_input_ids(input, self.padding_idx)
return super().forward(positions), positions
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True):
if torch.cuda.is_available():
try:
from apex.normalization import FusedLayerNorm
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
except ImportError:
pass
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a input_ids with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _filter_out_falsey_values(tup) -> Tuple:
"""Remove entries that are None or [] from an iterable."""
return tuple(x for x in tup if isinstance(x, torch.Tensor) or x)
# Public API
def _get_shape(t):
return getattr(t, "shape", None)
@add_start_docstrings(
"The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING,
)
class RelationalBartModel(PretrainedBartModel):
def __init__(self, config: BartConfig):
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
# self.keyword_embedding = nn.Embedding(len(KEYWORDS), config.d_model)
self.keyword_embedding = nn.Embedding(len(KEYWORDS), config.d_model)
self.encoder = RelationalBartEncoder(config, self.shared)
self.decoder = BartDecoder(config, self.shared)
self.init_weights()
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
def forward(
self,
input_ids,
example_info_list,
attention_mask=None,
decoder_input_ids=None,
encoder_outputs: Optional[Tuple] = None,
decoder_attention_mask=None,
decoder_cached_states=None,
use_cache=False,
):
# make masks if user doesn't supply
if not use_cache:
decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_bart_decoder_inputs(
self.config,
input_ids,
KEYWORDS.index("<pad>"),
decoder_input_ids=decoder_input_ids,
decoder_padding_mask=decoder_attention_mask,
causal_mask_dtype=self.shared.weight.dtype,
)
else:
decoder_padding_mask, causal_mask = None, None
assert decoder_input_ids is not None
if encoder_outputs is None:
encoder_outputs = self.encoder(input_ids=input_ids, example_info_list=example_info_list, attention_mask=attention_mask)
assert isinstance(encoder_outputs, tuple)
# We want to use extra relational transformer here
# Because the output of the encoder_outputs is ((question, column, column_mask, table), _, _)
question, question_mask = encoder_outputs[0][0][0], encoder_outputs[0][0][1]
columns, columns_mask = encoder_outputs[0][1][0], encoder_outputs[0][1][1]
tables, tables_mask = encoder_outputs[0][2][0], encoder_outputs[0][2][1]
encoder_output_for_decoder = question
attention_mask_for_decoder = question_mask
batch_size = question.size(0)
keyword_size = len(KEYWORDS)
dim = self.config.d_model
keyword_vocab_embed = self.keyword_embedding.weight.unsqueeze(0).expand(batch_size, keyword_size, dim)
if columns is None:
# This is for sketch prediction
weight = keyword_vocab_embed
else:
weight = torch.cat([keyword_vocab_embed, columns], dim=1)
decoder_input_embed = batched_index_select(weight, dim=1, index=decoder_input_ids)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
decoder_input_ids,
decoder_input_embed,
encoder_output_for_decoder,
attention_mask_for_decoder,
decoder_padding_mask,
decoder_causal_mask=causal_mask,
decoder_cached_states=decoder_cached_states,
use_cache=use_cache,
) # x, next_cache, all_hidden_states, list(all_self_attns)
# Attention and hidden_states will be [] or None if they aren't needed
decoder_outputs: Tuple = _filter_out_falsey_values(decoder_outputs)
assert isinstance(decoder_outputs[0], torch.Tensor)
encoder_outputs: Tuple = _filter_out_falsey_values(encoder_outputs)
return decoder_outputs + encoder_outputs + (weight,)
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_output_embeddings(self):
return _make_linear_from_emb(self.shared) # make it on the fly
def fill_tensor(base, values, spans):
for idx, ex_spans in enumerate(spans):
for token_idx, span in enumerate(ex_spans):
if span[0] > 0:
base[idx, span[0]:span[1]] = values[idx, token_idx]
return base
class SinusoidalPositionalEmbedding(nn.Embedding):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions, embedding_dim, padding_idx=None):
super().__init__(num_positions, embedding_dim)
if embedding_dim % 2 != 0:
raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
self.weight = self._init_weight(self.weight)
@staticmethod
def _init_weight(out: nn.Parameter):
"""Identical to the XLM create_sinusoidal_embeddings except features are not interleaved.
The cos features are in the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = out.shape
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out[:, 0 : dim // 2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) # This line breaks for odd n_pos
out[:, dim // 2 :] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
out.requires_grad = False
return out
@torch.no_grad()
def forward(self, input_ids, use_cache=False):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
if use_cache:
positions = input_ids.data.new(1, 1).fill_(seq_len - 1) # called before slicing
else:
# starts at 0, ends at 1-seq_len
positions = torch.arange(seq_len, dtype=torch.long, device=self.weight.device)
return super().forward(positions) |