File size: 39,620 Bytes
d758c99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 |
import logging
import math
import os
import random
import re
import shutil
import warnings
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
from packaging import version
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, Sampler, SequentialSampler
from tqdm.auto import tqdm, trange
from transformers.data.data_collator import DataCollator, default_data_collator
from transformers.file_utils import is_apex_available, is_torch_tpu_available
from transformers.modeling_utils import PreTrainedModel
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput, TrainOutput, is_wandb_available
from relogic.pretrainkit.training_args import TrainingArguments
from relogic.pretrainkit.trainer_utils import EvalPredictionWithSize, PredictionOutputWithSize
if is_apex_available():
from apex import amp
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
try:
from torch.utils.tensorboard import SummaryWriter
_has_tensorboard = True
except ImportError:
try:
from tensorboardX import SummaryWriter
_has_tensorboard = True
except ImportError:
_has_tensorboard = False
def is_tensorboard_available():
return _has_tensorboard
if is_wandb_available():
import wandb
logger = logging.getLogger(__name__)
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for each local_master to do something.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
yield
if local_rank == 0:
torch.distributed.barrier()
class SequentialDistributedSampler(Sampler):
"""
Distributed Sampler that subsamples indicies sequentially,
making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training),
which means that the model params won't have to be synced (i.e. will not hang
for synchronization even if varied number of forward passes), we still add extra
samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, num_replicas=None, rank=None):
if num_replicas is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = torch.distributed.get_world_size()
if rank is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = torch.distributed.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def get_tpu_sampler(dataset: Dataset):
if xm.xrt_world_size() <= 1:
return RandomSampler(dataset)
return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
class Trainer:
"""
Trainer is a simple but feature-complete training and eval loop for PyTorch,
optimized for Transformers.
"""
model: PreTrainedModel
args: TrainingArguments
data_collator: DataCollator
train_dataset: Optional[Dataset]
eval_dataset: Optional[Dataset]
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None
prediction_loss_only: bool
tb_writer: Optional["SummaryWriter"] = None
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = None
global_step: Optional[int] = None
epoch: Optional[float] = None
def __init__(
self,
model: PreTrainedModel,
args: TrainingArguments,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Dataset] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
prediction_loss_only=False,
tb_writer: Optional["SummaryWriter"] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = None,
):
"""
Trainer is a simple but feature-complete training and eval loop for PyTorch,
optimized for Transformers.
Args:
prediction_loss_only:
(Optional) in evaluation and prediction, only return the loss
"""
self.model = model.to(args.device)
self.args = args
self.data_collator = data_collator if data_collator is not None else default_data_collator
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.compute_metrics = compute_metrics
self.prediction_loss_only = prediction_loss_only
self.optimizers = optimizers
if tb_writer is not None:
self.tb_writer = tb_writer
elif is_tensorboard_available() and self.is_world_master():
self.tb_writer = SummaryWriter(log_dir=self.args.logging_dir)
if not is_tensorboard_available():
logger.warning(
"You are instantiating a Trainer but Tensorboard is not installed. You should consider installing it."
)
if is_wandb_available():
self._setup_wandb()
else:
logger.info(
"You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
"run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface."
)
set_seed(self.args.seed)
# Create output directory if needed
if self.is_world_master():
os.makedirs(self.args.output_dir, exist_ok=True)
if is_torch_tpu_available():
# Set an xla_device flag on the model's config.
# We'll find a more elegant and not need to do this in the future.
self.model.config.xla_device = True
if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
self.data_collator = self.data_collator.collate_batch
warnings.warn(
(
"The `data_collator` should now be a simple callable (function, class with `__call__`), classes "
+ "with a `collate_batch` are deprecated and won't be supported in a future version."
),
FutureWarning,
)
def get_train_dataloader(self) -> DataLoader:
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
if is_torch_tpu_available():
train_sampler = get_tpu_sampler(self.train_dataset)
else:
train_sampler = (
RandomSampler(self.train_dataset)
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset)
)
data_loader = DataLoader(
self.train_dataset,
batch_size=self.args.train_batch_size,
sampler=train_sampler,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
)
return data_loader
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
if is_torch_tpu_available():
sampler = SequentialDistributedSampler(
eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
)
elif self.args.local_rank != -1:
sampler = SequentialDistributedSampler(eval_dataset)
else:
sampler = SequentialSampler(eval_dataset)
data_loader = DataLoader(
eval_dataset,
sampler=sampler,
batch_size=self.args.eval_batch_size,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
)
return data_loader
def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
# We use the same batch_size as for eval.
if is_torch_tpu_available():
sampler = SequentialDistributedSampler(
test_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
)
elif self.args.local_rank != -1:
sampler = SequentialDistributedSampler(test_dataset)
else:
sampler = SequentialSampler(test_dataset)
data_loader = DataLoader(
test_dataset,
sampler=sampler,
batch_size=self.args.eval_batch_size,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
)
return data_loader
def get_optimizers(
self, num_training_steps: int
) -> Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]:
"""
Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well.
If you want to use something else, you can pass a tuple in the Trainer's init,
or override this method in a subclass.
"""
if self.optimizers is not None:
return self.optimizers
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if "relational_transformer" not in n and not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
{
"params": [p for n, p in self.model.named_parameters() if "relational_transformer" in n and not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
"lr": 7e-5
}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
)
return optimizer, scheduler
def _setup_wandb(self):
"""
Setup the optional Weights & Biases (`wandb`) integration.
One can override this method to customize the setup if needed. Find more information at https://docs.wandb.com/huggingface
You can also override the following environment variables:
Environment:
WANDB_WATCH:
(Optional, ["gradients", "all", "false"]) "gradients" by default, set to "false" to disable gradient logging
or "all" to log gradients and parameters
WANDB_PROJECT:
(Optional): str - "huggingface" by default, set this to a custom string to store results in a different project
WANDB_DISABLED:
(Optional): boolean - defaults to false, set to "true" to disable wandb entirely
"""
if self.is_world_master():
logger.info(
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
)
wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=vars(self.args))
# keep track of model topology and gradients, unsupported on TPU
if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
wandb.watch(
self.model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, self.args.logging_steps)
)
def num_examples(self, dataloader: DataLoader) -> int:
"""
Helper to get num of examples from a DataLoader, by accessing its Dataset.
"""
return len(dataloader.dataset)
def train(self, model_path: Optional[str] = None):
"""
Main training entry point.
Args:
model_path:
(Optional) Local path to model if model to train has been instantiated from a local path
If present, we will try reloading the optimizer/scheduler states from there.
"""
train_dataloader = self.get_train_dataloader()
if self.args.max_steps > 0:
t_total = self.args.max_steps
num_train_epochs = (
self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
)
else:
t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
num_train_epochs = self.args.num_train_epochs
optimizer, scheduler = self.get_optimizers(num_training_steps=t_total)
# Check if saved optimizer or scheduler states exist
if (
model_path is not None
and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(
torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
)
scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))
model = self.model
if self.args.fp16:
if not is_apex_available():
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=self.args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if self.args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if self.args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[self.args.local_rank],
output_device=self.args.local_rank,
find_unused_parameters=True,
)
if self.tb_writer is not None:
self.tb_writer.add_text("args", self.args.to_json_string())
self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})
# Train!
if is_torch_tpu_available():
total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
else:
total_train_batch_size = (
self.args.train_batch_size
* self.args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", self.num_examples(train_dataloader))
logger.info(" Num Epochs = %d", num_train_epochs)
logger.info(" Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
self.global_step = 0
self.epoch = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if model_path is not None:
# set global_step to global_step of last saved checkpoint from model path
try:
self.global_step = int(model_path.split("-")[-1].split("/")[0])
epochs_trained = self.global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
steps_trained_in_current_epoch = self.global_step % (
len(train_dataloader) // self.args.gradient_accumulation_steps
)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", self.global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
self.global_step = 0
logger.info(" Starting fine-tuning.")
tr_loss = 0.0
logging_loss = 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(num_train_epochs), desc="Epoch", disable=not self.is_local_master() or not self.args.logging_tqdm
)
for epoch in train_iterator:
if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
train_dataloader.sampler.set_epoch(epoch)
if is_torch_tpu_available():
parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
self.args.device
)
epoch_iterator = tqdm(parallel_loader, desc="Iteration", disable=not self.is_local_master() or not self.args.logging_tqdm)
else:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=not self.is_local_master() or not self.args.logging_tqdm)
for step, inputs in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
tr_loss += self._training_step(model, inputs, optimizer)
if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
len(epoch_iterator) <= self.args.gradient_accumulation_steps
and (step + 1) == len(epoch_iterator)
):
if self.args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), self.args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
if is_torch_tpu_available():
xm.optimizer_step(optimizer)
else:
optimizer.step()
scheduler.step()
model.zero_grad()
self.global_step += 1
self.epoch = epoch + (step + 1) / len(epoch_iterator)
if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
self.global_step == 1 and self.args.logging_first_step
):
logs: Dict[str, float] = {}
logs["loss"] = (tr_loss - logging_loss) / self.args.logging_steps
# backward compatibility for pytorch schedulers
logs["learning_rate"] = (
scheduler.get_last_lr()[0]
if version.parse(torch.__version__) >= version.parse("1.4")
else scheduler.get_lr()[0]
)
logging_loss = tr_loss
self._log(logs)
if (self.args.eval_steps > 0 and self.global_step % self.args.eval_steps == 0):
if self.args.evaluate_during_training:
self.evaluate()
if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
# In all cases (even distributed/parallel), self.model is always a reference
# to the model we want to save.
if hasattr(model, "module"):
assert model.module is self.model
else:
assert model is self.model
# Save model checkpoint
output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")
self.save_model(output_dir)
if self.is_world_master():
self._rotate_checkpoints()
if is_torch_tpu_available():
xm.rendezvous("saving_optimizer_states")
xm.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
xm.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
elif self.is_world_master():
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
epoch_iterator.close()
break
if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
train_iterator.close()
break
if self.args.tpu_metrics_debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
if self.tb_writer:
self.tb_writer.close()
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
return TrainOutput(self.global_step, tr_loss / self.global_step)
def _log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
if self.epoch is not None:
logs["epoch"] = self.epoch
if self.global_step is None:
# when logging evaluation metrics without training
self.global_step = 0
if self.tb_writer:
for k, v in logs.items():
if isinstance(v, (int, float)):
self.tb_writer.add_scalar(k, v, self.global_step)
else:
logger.warning(
"Trainer is attempting to log a value of "
'"%s" of type %s for key "%s" as a scalar. '
"This invocation of Tensorboard's writer.add_scalar() "
"is incorrect so we dropped this attribute.",
v,
type(v),
k,
)
self.tb_writer.flush()
if is_wandb_available():
if self.is_world_master():
wandb.log(logs, step=self.global_step)
output = {**logs, **{"step": self.global_step}}
if iterator is not None:
iterator.write(output)
else:
logger.info(output)
def _training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], optimizer: torch.optim.Optimizer
) -> float:
model.train()
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.args.device)
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
return loss.item()
def is_local_master(self) -> bool:
if is_torch_tpu_available():
return xm.is_master_ordinal(local=True)
else:
return self.args.local_rank in [-1, 0]
def is_world_master(self) -> bool:
"""
This will be True only in one process, even in distributed mode,
even when training on multiple machines.
"""
if is_torch_tpu_available():
return xm.is_master_ordinal(local=False)
else:
return self.args.local_rank == -1 or torch.distributed.get_rank() == 0
def save_model(self, output_dir: Optional[str] = None):
"""
Saving best-practices: if you use default names for the model,
you can reload it using from_pretrained().
Will only save from the world_master process (unless in TPUs).
"""
if is_torch_tpu_available():
self._save_tpu(output_dir)
elif self.is_world_master():
self._save(output_dir)
def _save_tpu(self, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
logger.info("Saving model checkpoint to %s", output_dir)
if xm.is_master_ordinal():
os.makedirs(output_dir, exist_ok=True)
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, PreTrainedModel):
raise ValueError("Trainer.model appears to not be a PreTrainedModel")
xm.rendezvous("saving_checkpoint")
self.model.save_pretrained(output_dir)
def _save(self, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", output_dir)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# if not isinstance(self.model, PreTrainedModel):
# raise ValueError("Trainer.model appears to not be a PreTrainedModel")
self.model.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def _rotate_checkpoints(self, use_mtime=False) -> None:
if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
if len(checkpoints_sorted) <= self.args.save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def evaluate(
self, eval_dataset: Optional[Dataset] = None, prediction_loss_only: Optional[bool] = None,
) -> Dict[str, float]:
"""
Run evaluation and return metrics.
The calling script will be responsible for providing a method to compute metrics, as they are
task-dependent.
Args:
eval_dataset: (Optional) Pass a dataset if you wish to override
the one on the instance.
Returns:
A dict containing:
- the eval loss
- the potential metrics computed from the predictions
"""
eval_dataloader = self.get_eval_dataloader(eval_dataset)
output = self._prediction_loop(eval_dataloader, description="Evaluation")
self._log(output.metrics)
if self.args.tpu_metrics_debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
return output.metrics
def predict(self, test_dataset: Dataset) -> PredictionOutput:
"""
Run prediction and return predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels.
In that case, this method will also return metrics, like in evaluate().
"""
test_dataloader = self.get_test_dataloader(test_dataset)
return self._prediction_loop(test_dataloader, description="Prediction")
def _prediction_loop(
self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None
) -> PredictionOutput:
"""
Prediction/evaluation loop, shared by `evaluate()` and `predict()`.
Works both with or without labels.
NOTE: One issue is on the size of prediction and labels.
For current code, it considers all the prediction and labels in different batch have same length of sequence.
This is not true for our application. To make this more general, I will reformat the predictions and labels.
"""
prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else self.prediction_loss_only
model = self.model
# multi-gpu eval
if self.args.n_gpu > 1:
model = torch.nn.DataParallel(model)
else:
model = self.model
# Note: in torch.distributed mode, there's no point in wrapping the model
# inside a DistributedDataParallel as we'll be under `no_grad` anyways.
batch_size = dataloader.batch_size
logger.info("***** Running %s *****", description)
logger.info(" Num examples = %d", self.num_examples(dataloader))
logger.info(" Batch size = %d", batch_size)
eval_losses: List[float] = []
preds: torch.Tensor = None
preds_size: torch.Tensor = None
label_ids: torch.Tensor = None
label_size: torch.Tensor = None
model.eval()
if is_torch_tpu_available():
dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)
for inputs in tqdm(dataloader, desc=description):
has_labels = any(inputs.get(k) is not None for k in ["labels", "lm_labels", "masked_lm_labels"])
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.args.device)
with torch.no_grad():
outputs = model(**inputs)
if has_labels:
step_eval_loss, logits = outputs[:2]
eval_losses += [step_eval_loss.mean().item()]
else:
logits = outputs[0]
if not prediction_loss_only:
# Change the way of concat
# We need to make sure that the size of preds and labels is (batch_size, sequence_length)
if preds is None:
preds = logits.detach()
preds_size = preds.new_full(size=preds.size()[:1], fill_value=preds.size(1)).detach()
preds = preds.view(-1)
else:
preds_size = torch.cat((preds_size, logits.new_full(size=logits.size()[:1], fill_value=logits.size(1)).detach()), dim=0)
preds = torch.cat((preds, logits.detach().view(-1)), dim=0)
if inputs.get("labels") is not None:
if label_ids is None:
label_ids = inputs["labels"].detach()
label_size = label_ids.new_full(size=label_ids.size()[:1], fill_value=label_ids.size(1)).detach()
label_ids = label_ids.view(-1)
else:
label_size = torch.cat((label_size, inputs["labels"].new_full(size=inputs["labels"].size()[:1], fill_value=inputs["labels"].size(1)).detach()), dim=0)
label_ids = torch.cat((label_ids, inputs["labels"].detach().view(-1)), dim=0)
if self.args.local_rank != -1:
# In distributed mode, concatenate all results from all nodes:
if preds is not None:
# preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader))
preds, preds_size = self.distributed_concat_with_size(preds, preds_size, num_total_examples=self.num_examples(dataloader))
if label_ids is not None:
# label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader))
label_ids, label_size = self.distributed_concat_with_size(label_ids, label_size, num_total_examples=self.num_examples(dataloader))
elif is_torch_tpu_available():
# tpu-comment: Get all predictions and labels from all worker shards of eval dataset
# NOTE: We do not modify this for now.
if preds is not None:
preds = xm.mesh_reduce("eval_preds", preds, torch.cat)
if label_ids is not None:
label_ids = xm.mesh_reduce("eval_label_ids", label_ids, torch.cat)
# Finally, turn the aggregated tensors into numpy arrays.
if preds is not None:
preds = preds.cpu().numpy()
preds_size = preds_size.cpu().numpy()
if label_ids is not None:
label_ids = label_ids.cpu().numpy()
label_size = label_size.cpu().numpy()
if self.compute_metrics is not None and preds is not None and label_ids is not None:
# metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
metrics = self.compute_metrics(EvalPredictionWithSize(predictions=preds, predictions_size=preds_size, label_ids=label_ids, label_size=label_size))
else:
metrics = {}
if len(eval_losses) > 0:
metrics["eval_loss"] = np.mean(eval_losses)
# Prefix all keys with eval_
for key in list(metrics.keys()):
if not key.startswith("eval_"):
metrics[f"eval_{key}"] = metrics.pop(key)
# return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
return PredictionOutputWithSize(predictions=preds, predictions_size=preds_size, label_ids=label_ids, label_size=label_size, metrics=metrics)
def distributed_concat(self, tensor: torch.Tensor, num_total_examples: int) -> torch.Tensor:
assert self.args.local_rank != -1
output_tensors = [tensor.clone() for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
output = concat[:num_total_examples]
return output
def distributed_concat_tensor(self, tensor: torch.Tensor):
assert self.args.local_rank != -1
output_tensors = [tensor.clone() for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
return concat
def distributed_concat_varsize_tensor(self, tensor: torch.Tensor):
assert self.args.local_rank != -1
sizes = self.distributed_concat_tensor(tensor.new_full(size=(1,), fill_value=tensor.size(0)))
max_size = sizes.max().item()
padded = tensor.new_zeros(max_size)
padded[:tensor.size(0)] = tensor
padded_agg = self.distributed_concat_tensor(padded)
slices = []
for i, size in enumerate(sizes):
start_idx = i * max_size
end_idx = start_idx + size.item()
slices.append(padded_agg[start_idx: end_idx])
ret = torch.cat(slices, dim=0)
return ret
def distributed_concat_with_size(self, tensor: torch.Tensor, size: torch.Tensor, num_total_examples: int) -> torch.Tensor:
assert self.args.local_rank != -1
# output_tensors = [tensor.clone() for _ in range(torch.distributed.get_world_size())]
# output_sizes = [size.clone() for _ in range(torch.distributed.get_world_size())]
# torch.distributed.all_gather(output_tensors, tensor)
# torch.distributed.all_gather(output_sizes, size)
# concat = torch.cat(output_tensors, dim=0)
# concat_sizes = torch.cat(output_sizes, dim=0)
concat_sizes = self.distributed_concat_varsize_tensor(size)
concat = self.distributed_concat_varsize_tensor(tensor)
# output_sizes = concat_sizes[:num_total_examples]
assert concat_sizes.sum() == concat.size(0)
return concat, concat_sizes
|