File size: 8,855 Bytes
d758c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import dataclasses
import json
import logging
import os
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple

from transformers.file_utils import cached_property, is_torch_available, is_torch_tpu_available, torch_required


if is_torch_available():
    import torch

if is_torch_tpu_available():
    import torch_xla.core.xla_model as xm


logger = logging.getLogger(__name__)


def default_logdir() -> str:
    """
    Same default as PyTorch
    """
    import socket
    from datetime import datetime

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    return os.path.join("runs", current_time + "_" + socket.gethostname())


@dataclass
class TrainingArguments:
    """
    TrainingArguments is the subset of the arguments we use in our example scripts
    **which relate to the training loop itself**.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."}
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory."
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )

    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
    evaluate_during_training: bool = field(
        default=False, metadata={"help": "Run evaluation during training at each logging step."},
    )

    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )

    per_gpu_train_batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. "
            "Batch size per GPU/TPU core/CPU for training."
        },
    )
    per_gpu_eval_batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred."
            "Batch size per GPU/TPU core/CPU for evaluation."
        },
    )

    gradient_accumulation_steps: int = field(
        default=1,
        metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
    )

    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for Adam."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for Adam optimizer."})
    max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})

    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    max_steps: int = field(
        default=-1,
        metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."},
    )
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})

    logging_tqdm: bool = field(default=False, metadata={"help": "Show tqdm or not."})
    eval_steps: int = field(default=500, metadata={"help": "Run validation every X updates steps."})

    logging_dir: Optional[str] = field(default_factory=default_logdir, metadata={"help": "Tensorboard log dir."})
    logging_first_step: bool = field(default=False, metadata={"help": "Log and eval the first global_step"})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    save_total_limit: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "Limit the total amount of checkpoints."
                "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
            )
        },
    )
    no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"})
    seed: int = field(default=42, metadata={"help": "random seed for initialization"})

    fp16: bool = field(
        default=False,
        metadata={"help": "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"},
    )
    fp16_opt_level: str = field(
        default="O1",
        metadata={
            "help": (
                "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                "See details at https://nvidia.github.io/apex/amp.html"
            )
        },
    )
    local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"})

    tpu_num_cores: Optional[int] = field(
        default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"}
    )
    tpu_metrics_debug: bool = field(default=False, metadata={"help": "TPU: Whether to print debug metrics"})

    dataloader_drop_last: bool = field(
        default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."}
    )

    @property
    def train_batch_size(self) -> int:
        if self.per_gpu_train_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_train_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size
        return per_device_batch_size * max(1, self.n_gpu)

    @property
    def eval_batch_size(self) -> int:
        if self.per_gpu_eval_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_eval_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size
        return per_device_batch_size * max(1, self.n_gpu)

    @cached_property
    @torch_required
    def _setup_devices(self) -> Tuple["torch.device", int]:
        logger.info("PyTorch: setting up devices")
        if self.no_cuda:
            device = torch.device("cpu")
            n_gpu = 0
        elif is_torch_tpu_available():
            device = xm.xla_device()
            n_gpu = 0
        elif self.local_rank == -1:
            # if n_gpu is > 1 we'll use nn.DataParallel.
            # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
            # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
            # trigger an error that a device index is missing. Index 0 takes into account the
            # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
            # will use the first GPU in that env, i.e. GPU#1
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            n_gpu = torch.cuda.device_count()
        else:
            # Here, we'll use torch.distributed.
            # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
            torch.distributed.init_process_group(backend="nccl")
            device = torch.device("cuda", self.local_rank)
            n_gpu = 1

        if device.type == "cuda":
            torch.cuda.set_device(device)

        return device, n_gpu

    @property
    @torch_required
    def device(self) -> "torch.device":
        return self._setup_devices[0]

    @property
    @torch_required
    def n_gpu(self):
        return self._setup_devices[1]

    def to_json_string(self):
        """
        Serializes this instance to a JSON string.
        """
        return json.dumps(dataclasses.asdict(self), indent=2)

    def to_sanitized_dict(self) -> Dict[str, Any]:
        """
        Sanitized serialization to use with TensorBoard’s hparams
        """
        d = dataclasses.asdict(self)
        valid_types = [bool, int, float, str]
        if is_torch_available():
            valid_types.append(torch.Tensor)
        return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}