|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BART model, ported from the fairseq repo.""" |
|
import logging |
|
import math |
|
import random |
|
from typing import Dict, List, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor, nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.configuration_bart import BartConfig |
|
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_callable |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
from relogic.logickit.dataflow.semtransparse.grammar.keywords import SKETCH_KEYWORDS, KEYWORDS |
|
from relogic.logickit.modules.span_extractors.average_span_extractor import AverageSpanExtractor |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx): |
|
""" Replace non-padding symbols with their position numbers. Position numbers begin at |
|
padding_idx+1. Padding symbols are ignored. This is modified from fairseq's |
|
`utils.make_positions`. |
|
|
|
:param torch.Tensor x: |
|
:return torch.Tensor: |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
BART_PRETRAINED_MODEL_ARCHIVE_MAP = { |
|
"facebook/bart-large": "https://cdn.huggingface.co/facebook/bart-large/pytorch_model.bin", |
|
"facebook/bart-large-mnli": "https://cdn.huggingface.co/facebook/bart-large-mnli/pytorch_model.bin", |
|
"facebook/bart-large-cnn": "https://cdn.huggingface.co/facebook/bart-large-cnn/pytorch_model.bin", |
|
"facebook/bart-large-xsum": "https://cdn.huggingface.co/facebook/bart-large-xsum/pytorch_model.bin", |
|
"facebook/mbart-large-en-ro": "https://cdn.huggingface.co/facebook/mbart-large-en-ro/pytorch_model.bin", |
|
} |
|
|
|
BART_START_DOCSTRING = r""" |
|
|
|
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and |
|
refer to the PyTorch documentation for all matters related to general usage and behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the configuration. |
|
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. |
|
|
|
""" |
|
BART_GENERATION_EXAMPLE = r""" |
|
Examples:: |
|
|
|
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig |
|
# see ``examples/summarization/bart/evaluate_cnn.py`` for a longer example |
|
model = BartForConditionalGeneration.from_pretrained('bart-large-cnn') |
|
tokenizer = BartTokenizer.from_pretrained('bart-large-cnn') |
|
ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." |
|
inputs = tokenizer.batch_encode_plus([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt') |
|
# Generate Summary |
|
summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True) |
|
print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]) |
|
|
|
""" |
|
|
|
BART_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them. |
|
Padding will be ignored by default should you provide it. |
|
Indices can be obtained using :class:`transformers.BartTokenizer.encode(text)`. |
|
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): |
|
Mask to avoid performing attention on padding token indices in input_ids. |
|
Mask values selected in ``[0, 1]``: |
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. |
|
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`, defaults to :obj:`None`): |
|
Tuple consists of (`last_hidden_state`, `optional`: `hidden_states`, `optional`: `attentions`) |
|
`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`) is a sequence of hidden-states at the output of the last layer of the encoder. |
|
Used in the cross-attention of the decoder. |
|
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`, defaults to :obj:`None`): |
|
Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper. |
|
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`, defaults to :obj:`None`): |
|
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default. |
|
If you want to change padding behavior, you should read :func:`~transformers.modeling_bart._prepare_decoder_inputs` and modify. |
|
See diagram 1 in the paper for more info on the default strategy |
|
""" |
|
def batched_index_select(input, dim, index): |
|
views = [input.shape[0]] + \ |
|
[1 if i != dim else -1 for i in range(1, len(input.shape))] |
|
expanse = list(input.shape) |
|
expanse[0] = -1 |
|
expanse[dim] = -1 |
|
index = index.view(views).expand(expanse) |
|
return torch.gather(input, dim, index) |
|
|
|
def invert_mask(attention_mask): |
|
assert attention_mask.dim() == 2 |
|
return attention_mask.eq(0) |
|
|
|
|
|
def _prepare_bart_decoder_inputs( |
|
config, input_ids, pad_token_id, decoder_input_ids=None, decoder_padding_mask=None, causal_mask_dtype=torch.float32, |
|
): |
|
"""Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if |
|
none are provided. This mimics the default behavior in fairseq. To override it pass in masks. |
|
Note: this is not called during generation |
|
""" |
|
|
|
if decoder_input_ids is None: |
|
decoder_input_ids = shift_tokens_right(input_ids, pad_token_id) |
|
bsz, tgt_len = decoder_input_ids.size() |
|
if decoder_padding_mask is None: |
|
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id) |
|
else: |
|
decoder_padding_mask = invert_mask(decoder_padding_mask) |
|
causal_mask = torch.triu(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1).to( |
|
dtype=causal_mask_dtype, device=decoder_input_ids.device |
|
) |
|
return decoder_input_ids, decoder_padding_mask, causal_mask |
|
|
|
|
|
class PretrainedBartModel(PreTrainedModel): |
|
config_class = BartConfig |
|
base_model_prefix = "model" |
|
pretrained_model_archive_map = BART_PRETRAINED_MODEL_ARCHIVE_MAP |
|
|
|
def _init_weights(self, module): |
|
std = self.config.init_std |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, SinusoidalPositionalEmbedding): |
|
pass |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def dummy_inputs(self): |
|
pad_token = self.config.pad_token_id |
|
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) |
|
dummy_inputs = { |
|
"attention_mask": input_ids.ne(pad_token), |
|
"input_ids": input_ids, |
|
} |
|
return dummy_inputs |
|
|
|
|
|
def _make_linear_from_emb(emb): |
|
vocab_size, emb_size = emb.weight.shape |
|
lin_layer = nn.Linear(vocab_size, emb_size, bias=False) |
|
lin_layer.weight.data = emb.weight.data |
|
return lin_layer |
|
|
|
|
|
|
|
def _check_shapes(shape_1, shape2): |
|
if shape_1 != shape2: |
|
raise AssertionError("shape mismatch: {} != {}".format(shape_1, shape2)) |
|
|
|
|
|
def shift_tokens_right(input_ids, pad_token_id): |
|
"""Shift input ids one token to the right, and wrap the last non pad token (usually <eos>).""" |
|
prev_output_tokens = input_ids.clone() |
|
index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1) |
|
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze() |
|
prev_output_tokens[:, 1:] = input_ids[:, :-1] |
|
return prev_output_tokens |
|
|
|
|
|
def make_padding_mask(input_ids, padding_idx=1): |
|
"""True for pad tokens""" |
|
padding_mask = input_ids.eq(padding_idx) |
|
if not padding_mask.any(): |
|
padding_mask = None |
|
return padding_mask |
|
|
|
|
|
|
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, config: BartConfig): |
|
super().__init__() |
|
self.embed_dim = config.d_model |
|
self.output_attentions = config.output_attentions |
|
self.self_attn = SelfAttention( |
|
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, |
|
) |
|
self.normalize_before = config.normalize_before |
|
self.self_attn_layer_norm = LayerNorm(self.embed_dim) |
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) |
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) |
|
self.final_layer_norm = LayerNorm(self.embed_dim) |
|
|
|
def forward(self, x, encoder_padding_mask): |
|
""" |
|
Args: |
|
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` |
|
encoder_padding_mask (ByteTensor): binary ByteTensor of shape |
|
`(batch, src_len)` where padding elements are indicated by ``1``. |
|
for t_tgt, t_src is excluded (or masked out), =0 means it is |
|
included in attention |
|
|
|
Returns: |
|
encoded output of shape `(seq_len, batch, embed_dim)` |
|
""" |
|
residual = x |
|
if self.normalize_before: |
|
x = self.self_attn_layer_norm(x) |
|
x, attn_weights = self.self_attn( |
|
query=x, key=x, key_padding_mask=encoder_padding_mask, need_weights=self.output_attentions |
|
) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
if not self.normalize_before: |
|
x = self.self_attn_layer_norm(x) |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.final_layer_norm(x) |
|
x = self.activation_fn(self.fc1(x)) |
|
x = F.dropout(x, p=self.activation_dropout, training=self.training) |
|
x = self.fc2(x) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
if not self.normalize_before: |
|
x = self.final_layer_norm(x) |
|
return x, attn_weights |
|
|
|
|
|
class BartEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer |
|
is a :class:`EncoderLayer`. |
|
|
|
Args: |
|
config: BartConfig |
|
""" |
|
|
|
def __init__(self, config: BartConfig, embed_tokens): |
|
super().__init__() |
|
|
|
self.dropout = config.dropout |
|
self.layerdrop = config.encoder_layerdrop |
|
self.output_attentions = config.output_attentions |
|
self.output_hidden_states = config.output_hidden_states |
|
|
|
embed_dim = embed_tokens.embedding_dim |
|
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 |
|
self.padding_idx = embed_tokens.padding_idx |
|
self.max_source_positions = config.max_position_embeddings |
|
|
|
|
|
|
|
self.embed_tokens = embed_tokens |
|
if config.static_position_embeddings: |
|
self.embed_positions = SinusoidalPositionalEmbedding( |
|
config.max_position_embeddings, embed_dim, self.padding_idx |
|
) |
|
else: |
|
self.embed_positions = LearnedPositionalEmbedding( |
|
config.max_position_embeddings, embed_dim, self.padding_idx, |
|
) |
|
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)]) |
|
self.layernorm_embedding = LayerNorm(embed_dim) if config.normalize_embedding else nn.Identity() |
|
|
|
self.layer_norm = LayerNorm(config.d_model) if config.normalize_before else None |
|
|
|
def forward( |
|
self, input_ids, attention_mask=None, |
|
): |
|
""" |
|
Args: |
|
input_ids (LongTensor): tokens in the source language of shape |
|
`(batch, src_len)` |
|
attention_mask (torch.LongTensor): indicating which indices are padding tokens. |
|
Returns: |
|
Tuple comprised of: |
|
- **x** (Tensor): the last encoder layer's output of |
|
shape `(src_len, batch, embed_dim)` |
|
- **encoder_states** (List[Tensor]): all intermediate |
|
hidden states of shape `(src_len, batch, embed_dim)`. |
|
Only populated if *self.output_hidden_states:* is True. |
|
- **all_attentions** (List[Tensor]): Attention weights for each layer. |
|
During training might not be of length n_layers because of layer dropout. |
|
""" |
|
|
|
if attention_mask is not None: |
|
attention_mask = invert_mask(attention_mask) |
|
|
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale |
|
embed_pos, p_idx = self.embed_positions(input_ids) |
|
|
|
x = inputs_embeds + embed_pos |
|
x = self.layernorm_embedding(x) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
encoder_states, all_attentions = [], [] |
|
for encoder_layer in self.layers: |
|
if self.output_hidden_states: |
|
encoder_states.append(x) |
|
|
|
dropout_probability = random.uniform(0, 1) |
|
if self.training and (dropout_probability < self.layerdrop): |
|
attn = None |
|
else: |
|
x, attn = encoder_layer(x, attention_mask) |
|
|
|
if self.output_attentions: |
|
all_attentions.append(attn) |
|
|
|
if self.layer_norm: |
|
x = self.layer_norm(x) |
|
if self.output_hidden_states: |
|
encoder_states.append(x) |
|
|
|
|
|
encoder_states = [hidden_state.transpose(0, 1) for hidden_state in encoder_states] |
|
x = x.transpose(0, 1) |
|
|
|
return x, encoder_states, all_attentions |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, config: BartConfig): |
|
super().__init__() |
|
self.embed_dim = config.d_model |
|
self.output_attentions = config.output_attentions |
|
self.self_attn = SelfAttention( |
|
embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, |
|
) |
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
self.normalize_before = config.normalize_before |
|
|
|
self.self_attn_layer_norm = LayerNorm(self.embed_dim) |
|
self.encoder_attn = SelfAttention( |
|
self.embed_dim, |
|
config.decoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
encoder_decoder_attention=True, |
|
) |
|
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) |
|
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) |
|
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) |
|
self.final_layer_norm = LayerNorm(self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
x, |
|
encoder_hidden_states, |
|
encoder_attn_mask=None, |
|
layer_state=None, |
|
causal_mask=None, |
|
decoder_padding_mask=None, |
|
): |
|
residual = x |
|
|
|
if layer_state is None: |
|
layer_state = {} |
|
if self.normalize_before: |
|
x = self.self_attn_layer_norm(x) |
|
|
|
|
|
x, self_attn_weights = self.self_attn( |
|
query=x, |
|
key=x, |
|
layer_state=layer_state, |
|
key_padding_mask=decoder_padding_mask, |
|
attn_mask=causal_mask, |
|
need_weights=self.output_attentions, |
|
) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
if not self.normalize_before: |
|
x = self.self_attn_layer_norm(x) |
|
|
|
|
|
residual = x |
|
assert self.encoder_attn.cache_key != self.self_attn.cache_key |
|
if self.normalize_before: |
|
x = self.encoder_attn_layer_norm(x) |
|
x, _ = self.encoder_attn( |
|
query=x, |
|
key=encoder_hidden_states, |
|
key_padding_mask=encoder_attn_mask, |
|
layer_state=layer_state, |
|
) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
if not self.normalize_before: |
|
x = self.encoder_attn_layer_norm(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.final_layer_norm(x) |
|
x = self.activation_fn(self.fc1(x)) |
|
x = F.dropout(x, p=self.activation_dropout, training=self.training) |
|
x = self.fc2(x) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
if not self.normalize_before: |
|
x = self.final_layer_norm(x) |
|
return ( |
|
x, |
|
self_attn_weights, |
|
layer_state, |
|
) |
|
|
|
|
|
class BartDecoder(nn.Module): |
|
""" |
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer |
|
is a :class:`DecoderLayer`. |
|
Args: |
|
config: BartConfig |
|
embed_tokens (torch.nn.Embedding): output embedding |
|
""" |
|
|
|
def __init__(self, config: BartConfig, embed_tokens: nn.Embedding): |
|
super().__init__() |
|
self.output_attentions = config.output_attentions |
|
self.output_hidden_states = config.output_hidden_states |
|
self.dropout = config.dropout |
|
self.layerdrop = config.decoder_layerdrop |
|
self.padding_idx = embed_tokens.padding_idx |
|
|
|
|
|
self.max_target_positions = config.max_position_embeddings |
|
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 |
|
self.embed_tokens = embed_tokens |
|
if config.static_position_embeddings: |
|
self.embed_positions = SinusoidalPositionalEmbedding( |
|
config.max_position_embeddings, config.d_model, config.pad_token_id |
|
) |
|
else: |
|
self.embed_positions = LearnedPositionalEmbedding( |
|
config.max_position_embeddings, config.d_model, self.padding_idx, |
|
) |
|
self.layers = nn.ModuleList( |
|
[DecoderLayer(config) for _ in range(config.decoder_layers)] |
|
) |
|
self.layernorm_embedding = LayerNorm(config.d_model) if config.normalize_embedding else nn.Identity() |
|
self.layer_norm = LayerNorm(config.d_model) if config.add_final_layer_norm else None |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
input_embed, |
|
encoder_hidden_states, |
|
encoder_padding_mask, |
|
decoder_padding_mask, |
|
decoder_causal_mask, |
|
decoder_cached_states=None, |
|
use_cache=False, |
|
**unused |
|
): |
|
""" |
|
Includes several features from "Jointly Learning to Align and |
|
Translate with Transformer Models" (Garg et al., EMNLP 2019). |
|
|
|
Args: |
|
input_ids (LongTensor): previous decoder outputs of shape |
|
`(batch, tgt_len)`, for teacher forcing |
|
encoder_hidden_states: output from the encoder, used for |
|
encoder-side attention |
|
encoder_padding_mask: for ignoring pad tokens |
|
decoder_cached_states (dict or None): dictionary used for storing state during generation |
|
|
|
Returns: |
|
tuple: |
|
- the decoder's features of shape `(batch, tgt_len, embed_dim)` |
|
- hidden states |
|
- attentions |
|
""" |
|
|
|
if encoder_padding_mask is not None: |
|
encoder_padding_mask = invert_mask(encoder_padding_mask) |
|
|
|
|
|
positions, p_idx = self.embed_positions(input_ids, use_cache=use_cache) |
|
|
|
|
|
if use_cache: |
|
input_ids = input_ids[:, -1:] |
|
input_embed = input_embed[:, -1:] |
|
positions = positions[:, -1:] |
|
|
|
|
|
|
|
x = input_embed * self.embed_scale |
|
x += positions |
|
x = self.layernorm_embedding(x) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
encoder_hidden_states = encoder_hidden_states.transpose(0, 1) |
|
|
|
|
|
all_hidden_states = () |
|
all_self_attns = () |
|
next_decoder_cache = [] |
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
if self.output_hidden_states: |
|
all_hidden_states += (x,) |
|
dropout_probability = random.uniform(0, 1) |
|
if self.training and (dropout_probability < self.layerdrop): |
|
continue |
|
|
|
layer_state = decoder_cached_states[idx] if decoder_cached_states is not None else None |
|
|
|
x, layer_self_attn, layer_past = decoder_layer( |
|
x, |
|
encoder_hidden_states, |
|
encoder_attn_mask=encoder_padding_mask, |
|
decoder_padding_mask=decoder_padding_mask, |
|
layer_state=layer_state, |
|
causal_mask=decoder_causal_mask, |
|
) |
|
|
|
if use_cache: |
|
next_decoder_cache.append(layer_past.copy()) |
|
|
|
if self.layer_norm and (idx == len(self.layers) - 1): |
|
x = self.layer_norm(x) |
|
if self.output_attentions: |
|
all_self_attns += (layer_self_attn,) |
|
|
|
|
|
all_hidden_states = [hidden_state.transpose(0, 1) for hidden_state in all_hidden_states] |
|
x = x.transpose(0, 1) |
|
encoder_hidden_states = encoder_hidden_states.transpose(0, 1) |
|
|
|
if use_cache: |
|
next_cache = ((encoder_hidden_states, encoder_padding_mask), next_decoder_cache) |
|
else: |
|
next_cache = None |
|
return x, next_cache, all_hidden_states, list(all_self_attns) |
|
|
|
|
|
def _reorder_buffer(attn_cache, new_order): |
|
for k, input_buffer_k in attn_cache.items(): |
|
if input_buffer_k is not None: |
|
attn_cache[k] = input_buffer_k.index_select(0, new_order) |
|
return attn_cache |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
dropout=0.0, |
|
bias=True, |
|
encoder_decoder_attention=False, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" |
|
self.scaling = self.head_dim ** -0.5 |
|
|
|
self.encoder_decoder_attention = encoder_decoder_attention |
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self" |
|
|
|
def _shape(self, tensor, dim_0, bsz): |
|
return tensor.contiguous().view(dim_0, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
|
|
def forward( |
|
self, |
|
query, |
|
key: Optional[Tensor], |
|
key_padding_mask: Optional[Tensor] = None, |
|
layer_state: Optional[Dict[str, Optional[Tensor]]] = None, |
|
attn_mask: Optional[Tensor] = None, |
|
need_weights=False, |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
"""Input shape: Time(SeqLen) x Batch x Channel""" |
|
static_kv: bool = self.encoder_decoder_attention |
|
tgt_len, bsz, embed_dim = query.size() |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
|
|
if layer_state is not None: |
|
saved_state = layer_state.get(self.cache_key, {}) |
|
if "prev_key" in saved_state: |
|
|
|
if static_kv: |
|
key = None |
|
else: |
|
saved_state = None |
|
layer_state = {} |
|
|
|
q = self.q_proj(query) * self.scaling |
|
if static_kv: |
|
if key is None: |
|
k = v = None |
|
else: |
|
k = self.k_proj(key) |
|
v = self.v_proj(key) |
|
else: |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
|
|
q = self._shape(q, tgt_len, bsz) |
|
if k is not None: |
|
k = self._shape(k, -1, bsz) |
|
if v is not None: |
|
v = self._shape(v, -1, bsz) |
|
|
|
if saved_state is not None: |
|
k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz) |
|
|
|
|
|
layer_state[self.cache_key] = { |
|
"prev_key": k.view(bsz, self.num_heads, -1, self.head_dim), |
|
"prev_value": v.view(bsz, self.num_heads, -1, self.head_dim), |
|
"prev_key_padding_mask": key_padding_mask if not static_kv else None, |
|
} |
|
|
|
assert k is not None |
|
src_len = k.size(1) |
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if attn_mask is not None: |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
assert key_padding_mask is None or key_padding_mask.size()[:2] == (bsz, src_len,) |
|
|
|
if key_padding_mask is not None: |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2) |
|
attn_weights = attn_weights.masked_fill(reshaped, float("-inf")) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
attn_weights = F.softmax(attn_weights, dim=-1) |
|
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training,) |
|
|
|
assert v is not None |
|
attn_output = torch.bmm(attn_probs, v) |
|
assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn_output = self.out_proj(attn_output) |
|
if need_weights: |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights = None |
|
return attn_output, attn_weights |
|
|
|
def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz): |
|
|
|
if "prev_key" in saved_state: |
|
_prev_key = saved_state["prev_key"] |
|
assert _prev_key is not None |
|
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
assert k is not None |
|
k = torch.cat([prev_key, k], dim=1) |
|
if "prev_value" in saved_state: |
|
_prev_value = saved_state["prev_value"] |
|
assert _prev_value is not None |
|
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
assert v is not None |
|
v = torch.cat([prev_value, v], dim=1) |
|
assert k is not None and v is not None |
|
prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None) |
|
key_padding_mask = self._cat_prev_key_padding_mask( |
|
key_padding_mask, prev_key_padding_mask, bsz, k.size(1), static_kv |
|
) |
|
return k, v, key_padding_mask |
|
|
|
@staticmethod |
|
def _cat_prev_key_padding_mask( |
|
key_padding_mask: Optional[Tensor], |
|
prev_key_padding_mask: Optional[Tensor], |
|
batch_size: int, |
|
src_len: int, |
|
static_kv: bool, |
|
) -> Optional[Tensor]: |
|
|
|
if prev_key_padding_mask is not None: |
|
if static_kv: |
|
new_key_padding_mask = prev_key_padding_mask |
|
else: |
|
new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1) |
|
|
|
elif key_padding_mask is not None: |
|
filler = torch.zeros( |
|
batch_size, |
|
src_len - key_padding_mask.size(1), |
|
dtype=key_padding_mask.dtype, |
|
device=key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat([filler, key_padding_mask], dim=1) |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask |
|
return new_key_padding_mask |
|
|
|
|
|
class BartClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
|
|
|
|
def __init__( |
|
self, input_dim, inner_dim, num_classes, pooler_dropout, |
|
): |
|
super().__init__() |
|
self.dense = nn.Linear(input_dim, inner_dim) |
|
self.dropout = nn.Dropout(p=pooler_dropout) |
|
self.out_proj = nn.Linear(inner_dim, num_classes) |
|
|
|
def forward(self, x): |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class LearnedPositionalEmbedding(nn.Embedding): |
|
""" |
|
This module learns positional embeddings up to a fixed maximum size. |
|
Padding ids are ignored by either offsetting based on padding_idx |
|
or by setting padding_idx to None and ensuring that the appropriate |
|
position ids are passed to the forward function. |
|
""" |
|
|
|
def __init__( |
|
self, num_embeddings: int, embedding_dim: int, padding_idx: int, |
|
): |
|
|
|
|
|
assert padding_idx is not None |
|
num_embeddings += padding_idx + 1 |
|
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx) |
|
|
|
def forward(self, input, use_cache=False): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
if use_cache: |
|
pos = int(self.padding_idx + input.size(1)) |
|
positions = input.data.new(1, 1).fill_(pos) |
|
else: |
|
positions = create_position_ids_from_input_ids(input, self.padding_idx) |
|
return super().forward(positions), positions |
|
|
|
|
|
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True): |
|
if torch.cuda.is_available(): |
|
try: |
|
from apex.normalization import FusedLayerNorm |
|
|
|
return FusedLayerNorm(normalized_shape, eps, elementwise_affine) |
|
except ImportError: |
|
pass |
|
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) |
|
|
|
|
|
def fill_with_neg_inf(t): |
|
"""FP16-compatible function that fills a input_ids with -inf.""" |
|
return t.float().fill_(float("-inf")).type_as(t) |
|
|
|
|
|
def _filter_out_falsey_values(tup) -> Tuple: |
|
"""Remove entries that are None or [] from an iterable.""" |
|
return tuple(x for x in tup if isinstance(x, torch.Tensor) or x) |
|
|
|
|
|
|
|
def _get_shape(t): |
|
return getattr(t, "shape", None) |
|
|
|
from relogic.logickit.modules.contextualizers.relation_aware_transformer import RelationAwareTransformer |
|
from relogic.logickit.modules.contextualizers.bart_based_relational_transformer import BartRelationalEncoder |
|
@add_start_docstrings( |
|
"The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING, |
|
) |
|
class BartModel(PretrainedBartModel): |
|
def __init__(self, config: BartConfig): |
|
super().__init__(config) |
|
self.output_attentions = config.output_attentions |
|
self.output_hidden_states = config.output_hidden_states |
|
|
|
padding_idx, vocab_size = config.pad_token_id, config.vocab_size |
|
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) |
|
|
|
self.keyword_embedding = nn.Embedding(len(KEYWORDS), config.d_model) |
|
|
|
self.encoder = BartEncoder(config, self.shared) |
|
self.decoder = BartDecoder(config, self.shared) |
|
|
|
self.init_weights() |
|
|
|
self.average_extractor = AverageSpanExtractor() |
|
|
|
|
|
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids, |
|
column_spans, |
|
copy_span=None, |
|
attention_mask=None, |
|
decoder_input_ids=None, |
|
encoder_outputs: Optional[Tuple] = None, |
|
decoder_attention_mask=None, |
|
decoder_cached_states=None, |
|
use_cache=False, |
|
): |
|
|
|
|
|
if not use_cache: |
|
decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_bart_decoder_inputs( |
|
self.config, |
|
input_ids, |
|
KEYWORDS.index("<pad>"), |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_padding_mask=decoder_attention_mask, |
|
causal_mask_dtype=self.shared.weight.dtype, |
|
) |
|
else: |
|
decoder_padding_mask, causal_mask = None, None |
|
|
|
assert decoder_input_ids is not None |
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask) |
|
assert isinstance(encoder_outputs, tuple) |
|
|
|
|
|
encoder_outputs_tensor = encoder_outputs[0].contiguous() |
|
|
|
|
|
|
|
|
|
|
|
|
|
encoder_output_for_decoder = encoder_outputs_tensor |
|
attention_mask_for_decoder = attention_mask |
|
|
|
|
|
|
|
column_mask = (column_spans[:,:,0] > 0).long() |
|
columns = self.average_extractor( |
|
sequence_tensor=encoder_outputs_tensor, |
|
span_indices=column_spans, |
|
span_indices_mask=column_mask, ) |
|
|
|
|
|
|
|
batch_size = encoder_outputs[0].size(0) |
|
keyword_size = len(KEYWORDS) |
|
dim = self.config.d_model |
|
|
|
if copy_span is not None: |
|
token_to_copy_list = [] |
|
max_length = 0 |
|
for idx in range(batch_size): |
|
token_to_copy = encoder_outputs_tensor[idx, copy_span[idx][0]: copy_span[idx][1]] |
|
token_to_copy_list.append(torch.cat([token_to_copy, columns[idx][column_mask[idx].bool()]], dim=0)) |
|
if token_to_copy_list[-1].size(0) > max_length: |
|
max_length = token_to_copy_list[-1].size(0) |
|
token_to_copy_tensor = columns.new_zeros((batch_size, max_length, dim)) |
|
for idx in range(batch_size): |
|
token_to_copy_tensor[idx][:token_to_copy_list[idx].size(0)] = token_to_copy_list[idx] |
|
|
|
|
|
keyword_vocab_embed = self.keyword_embedding.weight.unsqueeze(0).expand(batch_size, keyword_size, dim) |
|
if columns is None and copy_span is None: |
|
weight = keyword_vocab_embed |
|
elif copy_span is None: |
|
weight = torch.cat([keyword_vocab_embed, columns], dim=1) |
|
else: |
|
weight = torch.cat([keyword_vocab_embed, token_to_copy_tensor], dim=1) |
|
decoder_input_embed = batched_index_select(weight, dim=1, index=decoder_input_ids) |
|
|
|
decoder_outputs = self.decoder( |
|
decoder_input_ids, |
|
decoder_input_embed, |
|
encoder_output_for_decoder, |
|
attention_mask_for_decoder, |
|
decoder_padding_mask, |
|
decoder_causal_mask=causal_mask, |
|
decoder_cached_states=decoder_cached_states, |
|
use_cache=use_cache, |
|
) |
|
|
|
decoder_outputs: Tuple = _filter_out_falsey_values(decoder_outputs) |
|
assert isinstance(decoder_outputs[0], torch.Tensor) |
|
encoder_outputs: Tuple = _filter_out_falsey_values(encoder_outputs) |
|
return decoder_outputs + encoder_outputs + (weight,) |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, value): |
|
self.shared = value |
|
self.encoder.embed_tokens = self.shared |
|
self.decoder.embed_tokens = self.shared |
|
|
|
def get_output_embeddings(self): |
|
return _make_linear_from_emb(self.shared) |
|
|
|
def fill_tensor(base, values, spans): |
|
for idx, ex_spans in enumerate(spans): |
|
for token_idx, span in enumerate(ex_spans): |
|
if span[0] > 0: |
|
base[idx, span[0]:span[1]] = values[idx, token_idx] |
|
return base |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
"The BART Model with a language modeling head. Can be used for summarization.", |
|
BART_START_DOCSTRING + BART_GENERATION_EXAMPLE, |
|
) |
|
class BartForConditionalGeneration(PretrainedBartModel): |
|
base_model_prefix = "model" |
|
|
|
def __init__(self, config: BartConfig): |
|
super().__init__(config) |
|
base_model = BartModel(config) |
|
self.model = base_model |
|
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) |
|
|
|
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: |
|
old_num_tokens = self.model.shared.num_embeddings |
|
new_embeddings = super().resize_token_embeddings(new_num_tokens) |
|
self.model.shared = new_embeddings |
|
self._resize_final_logits_bias(new_num_tokens, old_num_tokens) |
|
return new_embeddings |
|
|
|
def _resize_final_logits_bias(self, new_num_tokens: int, old_num_tokens: int) -> None: |
|
if new_num_tokens <= old_num_tokens: |
|
new_bias = self.final_logits_bias[:, :new_num_tokens] |
|
else: |
|
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) |
|
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) |
|
self.register_buffer("final_logits_bias", new_bias) |
|
|
|
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
encoder_outputs=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
decoder_cached_states=None, |
|
lm_labels=None, |
|
use_cache=False, |
|
**unused |
|
): |
|
r""" |
|
masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the masked language modeling loss. |
|
Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring). |
|
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens |
|
with labels |
|
in ``[0, ..., config.vocab_size]``. |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: |
|
masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Masked language modeling loss. |
|
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
|
|
Examples:: |
|
|
|
# Mask filling only works for bart-large |
|
from transformers import BartTokenizer, BartForConditionalGeneration |
|
tokenizer = BartTokenizer.from_pretrained('bart-large') |
|
TXT = "My friends are <mask> but they eat too many carbs." |
|
model = BartForConditionalGeneration.from_pretrained('bart-large') |
|
input_ids = tokenizer.batch_encode_plus([TXT], return_tensors='pt')['input_ids'] |
|
logits = model(input_ids)[0] |
|
masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() |
|
probs = logits[0, masked_index].softmax(dim=0) |
|
values, predictions = probs.topk(5) |
|
tokenizer.decode(predictions).split() |
|
# ['good', 'great', 'all', 'really', 'very'] |
|
""" |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
encoder_outputs=encoder_outputs, |
|
decoder_attention_mask=decoder_attention_mask, |
|
decoder_cached_states=decoder_cached_states, |
|
use_cache=use_cache, |
|
) |
|
lm_logits = F.linear(outputs[0], self.model.shared.weight, bias=self.final_logits_bias) |
|
outputs = (lm_logits,) + outputs[1:] |
|
if lm_labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
|
|
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), lm_labels.view(-1)) |
|
outputs = (masked_lm_loss,) + outputs |
|
|
|
return outputs |
|
|
|
def prepare_inputs_for_generation(self, decoder_input_ids, past, attention_mask, use_cache, **kwargs): |
|
assert past is not None, "past has to be defined for encoder_outputs" |
|
|
|
|
|
if not past[1]: |
|
encoder_outputs, decoder_cached_states = past, None |
|
else: |
|
encoder_outputs, decoder_cached_states = past |
|
return { |
|
"input_ids": None, |
|
"encoder_outputs": encoder_outputs, |
|
"decoder_cached_states": decoder_cached_states, |
|
"decoder_input_ids": decoder_input_ids, |
|
"attention_mask": attention_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_logits_for_generation(self, logits, cur_len, max_length): |
|
if cur_len == 1: |
|
self._force_token_ids_generation(logits, self.config.bos_token_id) |
|
if cur_len == max_length - 1 and self.config.eos_token_id is not None: |
|
self._force_token_ids_generation(logits, self.config.eos_token_id) |
|
return logits |
|
|
|
def _force_token_ids_generation(self, scores, token_ids) -> None: |
|
"""force one of token_ids to be generated by setting prob of all other tokens to 0""" |
|
if isinstance(token_ids, int): |
|
token_ids = [token_ids] |
|
all_but_token_ids_mask = torch.tensor( |
|
[x for x in range(self.config.vocab_size) if x not in token_ids], |
|
dtype=torch.long, |
|
device=next(self.parameters()).device, |
|
) |
|
assert len(scores.shape) == 2, "scores should be of rank 2 with shape: [batch_size, vocab_size]" |
|
scores[:, all_but_token_ids_mask] = -float("inf") |
|
|
|
@staticmethod |
|
def _reorder_cache(past, beam_idx): |
|
((enc_out, enc_mask), decoder_cached_states) = past |
|
reordered_past = [] |
|
for layer_past in decoder_cached_states: |
|
|
|
layer_past_new = { |
|
attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items() |
|
} |
|
reordered_past.append(layer_past_new) |
|
|
|
new_enc_out = enc_out if enc_out is None else enc_out.index_select(0, beam_idx) |
|
new_enc_mask = enc_mask if enc_mask is None else enc_mask.index_select(0, beam_idx) |
|
|
|
past = ((new_enc_out, new_enc_mask), reordered_past) |
|
return past |
|
|
|
def get_encoder(self): |
|
return self.model.encoder |
|
|
|
def get_output_embeddings(self): |
|
return _make_linear_from_emb(self.model.shared) |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, |
|
BART_START_DOCSTRING, |
|
) |
|
class BartForSequenceClassification(PretrainedBartModel): |
|
def __init__(self, config: BartConfig, **kwargs): |
|
super().__init__(config, **kwargs) |
|
self.model = BartModel(config) |
|
self.classification_head = BartClassificationHead( |
|
config.d_model, config.d_model, config.num_labels, config.classif_dropout, |
|
) |
|
self.model._init_weights(self.classification_head.dense) |
|
self.model._init_weights(self.classification_head.out_proj) |
|
|
|
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
encoder_outputs=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
labels=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the sequence classification/regression loss. |
|
Indices should be in :obj:`[0, ..., config.num_labels - 1]`. |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BartConfig`) and inputs: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): |
|
Classification loss (cross entropy) |
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): |
|
Classification (or regression if config.num_labels==1) scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
Attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention |
|
heads. |
|
|
|
Examples:: |
|
|
|
from transformers import BartTokenizer, BartForSequenceClassification |
|
import torch |
|
|
|
tokenizer = BartTokenizer.from_pretrained('bart-large') |
|
model = BartForSequenceClassification.from_pretrained('bart-large') |
|
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", |
|
add_special_tokens=True)).unsqueeze(0) # Batch size 1 |
|
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 |
|
outputs = model(input_ids, labels=labels) |
|
loss, logits = outputs[:2] |
|
|
|
""" |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
encoder_outputs=encoder_outputs, |
|
) |
|
x = outputs[0] |
|
eos_mask = input_ids.eq(self.config.eos_token_id) |
|
if len(torch.unique(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
sentence_representation = x[eos_mask, :].view(x.size(0), -1, x.size(-1))[:, -1, :] |
|
logits = self.classification_head(sentence_representation) |
|
|
|
outputs = (logits,) + outputs[1:] |
|
if labels is not None: |
|
loss = F.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
outputs = (loss,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class SinusoidalPositionalEmbedding(nn.Embedding): |
|
"""This module produces sinusoidal positional embeddings of any length.""" |
|
|
|
def __init__(self, num_positions, embedding_dim, padding_idx=None): |
|
super().__init__(num_positions, embedding_dim) |
|
if embedding_dim % 2 != 0: |
|
raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") |
|
self.weight = self._init_weight(self.weight) |
|
|
|
@staticmethod |
|
def _init_weight(out: nn.Parameter): |
|
"""Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. |
|
The cos features are in the 2nd half of the vector. [dim // 2:] |
|
""" |
|
n_pos, dim = out.shape |
|
position_enc = np.array( |
|
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] |
|
) |
|
out[:, 0 : dim // 2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) |
|
out[:, dim // 2 :] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) |
|
out.detach_() |
|
out.requires_grad = False |
|
return out |
|
|
|
@torch.no_grad() |
|
def forward(self, input_ids, use_cache=False): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
bsz, seq_len = input_ids.shape[:2] |
|
if use_cache: |
|
positions = input_ids.data.new(1, 1).fill_(seq_len - 1) |
|
else: |
|
|
|
positions = torch.arange(seq_len, dtype=torch.long, device=self.weight.device) |
|
return super().forward(positions) |
|
|
|
|
|
|