antonlabate
commited on
Commit
·
13c08c5
1
Parent(s):
8643bcb
ver 1.0
Browse files
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mRAT-SQL+GAP - Multilingual version of the RAT-SQL+GAP
|
2 |
+
Code and model from our BRACIS 2021 [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546).
|
3 |
+
|
4 |
+
Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
|
5 |
+
|
6 |
+
|
7 |
+
## Abstract
|
8 |
+
|
9 |
+
mRAT-SQL+GAP is a multilingual version of the RAT-SQL+GAP, wich start with Portuguese Language. Here is available the code, dataset and the results.
|
10 |
+
|
11 |
+
|
12 |
+
## Directory Structure
|
13 |
+
Go to the directory where you want to install the structure
|
14 |
+
```bash
|
15 |
+
git clone https://github.com/C4AI/gap-text2sql
|
16 |
+
cd gap-text2sql/mrat-sql-gap
|
17 |
+
```
|
18 |
+
|
19 |
+
## Conda mtext2slq Environment Setup
|
20 |
+
```bash
|
21 |
+
conda create --name mtext2sql python=3.7
|
22 |
+
conda activate mtext2sql
|
23 |
+
conda install pytorch=1.5 cudatoolkit=10.2 -c pytorch
|
24 |
+
pip install gdown
|
25 |
+
conda install -c conda-forge jsonnet
|
26 |
+
pip install -r requirements.txt
|
27 |
+
python -c "import nltk; nltk.download('stopwords'); nltk.download('punkt')"
|
28 |
+
conda install jupyter notebook
|
29 |
+
conda install -c conda-forge jupyter_contrib_nbextensions
|
30 |
+
|
31 |
+
```
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
## Setup Script
|
36 |
+
Just run this script below, it will copy the datasets.
|
37 |
+
The original version of the Spider dataset is distributed under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode) license.
|
38 |
+
The modified versions (translated to Portuguese, Spanish, French, double-size(English and Portuguese) and quad-size (English, Portuguese, Spanish and French)) of train_spider.json, train_others.json, and dev.json are distributed under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode) license, respecting ShareAlike.
|
39 |
+
|
40 |
+
```bash
|
41 |
+
chmod +x setup.sh
|
42 |
+
./setup.sh
|
43 |
+
```
|
44 |
+
|
45 |
+
## Specific setup
|
46 |
+
The models and checkpoints have big files (GBytes), so if you have enough disk space you can run all shell scripts. To understand how things work, run just BART_large.sh and after run the others.
|
47 |
+
```bash
|
48 |
+
./BART_large.sh
|
49 |
+
./mBART50MtoM-large.sh
|
50 |
+
./mT5_large.sh
|
51 |
+
./BERTimbau-base.sh
|
52 |
+
./BERTimbau-large.sh
|
53 |
+
```
|
54 |
+
|
55 |
+
## Environment Test
|
56 |
+
Now the environment is ready for training (fine-tune) and inferences. The training is very slow more than 60 hours for BART, BERTimbau, mBART50, and more than 28 hours for mT5. Therefore I recommend testing the environment with the inference.
|
57 |
+
|
58 |
+
### Preprocess dataset
|
59 |
+
This preprocess step is necessary both for inference and for training. It will take some time, maybe 40 minutes.
|
60 |
+
I will use the script for BART, but you can use the other, look the directory experiments/spider-configs
|
61 |
+
```bash
|
62 |
+
python run.py preprocess experiments/spider-configs/spider-BART-large-en-train_en-eval.jsonnet
|
63 |
+
```
|
64 |
+
You can see the files processed in the paths:
|
65 |
+
`data/spider-en/nl2code-1115,output_from=true,fs=2,emb=bart,cvlink`
|
66 |
+
|
67 |
+
## Inference
|
68 |
+
I will use the script for BART again.
|
69 |
+
Note: We are making inferences using the checkpoint already trained (directory logdir) and defined in:
|
70 |
+
`experiments/spider-configs/spider-BART-large-en-train_en-eval.jsonnet`
|
71 |
+
`logdir: "logdir/BART-large-en-train",` and
|
72 |
+
`eval_steps: [40300],`
|
73 |
+
```bash
|
74 |
+
python run.py eval experiments/spider-configs/spider-BART-large-en-train_en-eval.jsonnet
|
75 |
+
```
|
76 |
+
|
77 |
+
You then get the inference results and evaluation results in the paths:
|
78 |
+
|
79 |
+
`ie_dirs/BART-large-en-train/bart-large-en_run_1_true_1-step41000.infer`
|
80 |
+
|
81 |
+
and
|
82 |
+
|
83 |
+
`ie_dirs/BART-large-en-train/bart-large-en_run_1_true_1-step41000.eval`.
|
84 |
+
|
85 |
+
## Training
|
86 |
+
Execute if it is really necessary, if you want to fine-tune the model, this will take a long time. But if you have a good machine available and want to see different checkpoints in the logdir, do it.
|
87 |
+
|
88 |
+
```bash
|
89 |
+
python run.py train experiments/spider-configs/spider-BART-large-en-train_en-eval.jsonnet
|
90 |
+
```
|
91 |
+
You then get the training checkpoints in the paths:
|
92 |
+
`logdir/BART-large-en-train`
|
93 |
+
|
94 |
+
|
95 |
+
## Checkpoints and Inferences
|
96 |
+
|
97 |
+
The checkpoints are available here (ESM - Exact Set Matching Accuracy):
|
98 |
+
Paper mRAT-SQL+GAP - Multilingual version of the RAT-SQL+GAP
|
99 |
+
* BART-large trained in English [, ESM all: 0.718]
|
100 |
+
* Checkpoint: [40300](https://drive.google.com/file/d/1F4R-WkJKtJ4lFni3q4lBug6tzSo0H5Qe/view?usp=sharing)
|
101 |
+
* Inference - English: [ESM all: 0.718 - Baseline](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/BART-large-en-train/spider_eval_match_ratsqlgap-BART-ori-step40300.txt)
|
102 |
+
* BERTimbau-base trained in Portuguese
|
103 |
+
* Checkpoint: [24100](https://drive.google.com/file/d/1gIZS0RuIxdjmm7sNbA3R6p6--9iMJmW8/view?usp=sharing)
|
104 |
+
* Inference - Portuguese: [ESM all: 0.417](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/BERTimbau-base-pt-train/spider_eval_match_ratsqlgap-bertimbau-base-step24100.txt)
|
105 |
+
* mBART50MtoM-large trained in English
|
106 |
+
* Checkpoint [23100](https://drive.google.com/file/d/16mQf1gMTVGkvONUGpzELzkjCFX5M74cO/view?usp=sharing)
|
107 |
+
* Inference - English: [ESM all: 0.651](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-train/spider_eval_match_ratsqlgap-mBART50MtoM-large-en-ori-data-step23100.txt)
|
108 |
+
* mBART50MtoM-large trained in Portuguese
|
109 |
+
* Checkpoint [39100](https://drive.google.com/file/d/1fWPH4bG9-UjW-p6OgmpINWLLsnOopWLh/view?usp=sharing)
|
110 |
+
* Inference - Portuguese: [ESM all: 0.588](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-pt-train/spider_eval_match_ratsqlgap-mBART50MtoM-largeSimplemmaPtEn-step39100.txt)
|
111 |
+
* mBART50MtoM-large trained in English and Portuguese (together)
|
112 |
+
* Checkpoint [41000](https://drive.google.com/file/d/1szb44h_2t3fK2Vc02PdaAjDqnkWqM-0U/view?usp=sharing)
|
113 |
+
* Inference - English: [ESM all: 0.664](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-train/41000/spider_eval_match_ratsqlgap-mBART50MtoM-largeSimplemmaPtEn-pt-en-Eval-en-step41000.txt)
|
114 |
+
* Inference - Portuguese: [ESM all: 0.595 Best inferences in Portuguese](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-train/41000/spider_eval_match_ratsqlgap-mBART50MtoM-largeSimplemmaPtEn-pt-en-Eval-pt-step41000.txt)
|
115 |
+
* Checkpoint [21100](https://drive.google.com/file/d/1MeLkvGf9-5it1JXnUvU9AmXVnnbAAfP0/view?usp=sharing)
|
116 |
+
* Inference - English: [ESM all: 0.678 Best inferences in English](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-train/21100/spider_eval_match_ratsqlgap-mBART50MtoM-largeSimplemmaPtEn-pt-en-Eval-en-step21100.txt)
|
117 |
+
* Inference - Portuguese: [ESM all: 0.581](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-train/21100/spider_eval_match_ratsqlgap-mBART50MtoM-largeSimplemmaPtEn-pt-en-Eval-pt-step21100.txt)
|
118 |
+
|
119 |
+
Future work of the paper mRAT-SQL+GAP
|
120 |
+
* BERTimbau-large trained in Portuguese
|
121 |
+
* Checkpoint: [40100](https://drive.google.com/file/d/1q1NOxisOcIdkMftzGPVxBDn989LDDG3X/view?usp=sharing)
|
122 |
+
* Inference - Portuguese: [ESM all: 0.418](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/BERTimbau-large-pt-train/spider_eval_match_ratsqlgap-BERTimbau-large-pt-train-Eval-pt-step40100.txt)
|
123 |
+
* mBART50MtoM-large trained in English, Portuguese, Spanish and French (together) - just best inferences
|
124 |
+
* Checkpoint: [39100](https://drive.google.com/file/d/18nioEDEpZf-6CNH_sU3IMZxsSNts_a4y/view?usp=sharing)
|
125 |
+
* Inference - English: [ESM all: 0.696](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-es-fr-train/39100/spider_eval_match_ratsqlgap-mBART50MtoM-large-en-pt-es-fr-train_en-eval-step39100.txt)
|
126 |
+
* Checkpoint: [42100](https://drive.google.com/file/d/1AmJjyVHiP9V-FzW9Q1sXge4YMWAP-srg/view?usp=sharing)
|
127 |
+
* Inference - Portuguese: [ESM all pt: 0.626](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-es-fr-train/42100/spider_eval_match_ratsqlgap-mBART50MtoM-large-en-pt-es-fr-train_pt-eval-step42100.txt)
|
128 |
+
* Inference - Spanish: [ESM all: 0.628](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-es-fr-train/42100/spider_eval_match_ratsqlgap-mBART50MtoM-large-en-pt-es-fr-train_es-eval-step42100.txt)
|
129 |
+
* Checkpoint: [44100](https://drive.google.com/file/d/1P0F218tNkW42Pb7okn3uFyTT5sy4zGZR/view?usp=sharing)
|
130 |
+
* Inference - French: [ESM all: 0.649](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mBART50MtoM-large-en-pt-es-fr-train/44100/spider_eval_match_ratsqlgap-mBART50MtoM-large-en-pt-es-fr-train_fr-eval-step44100.txt)
|
131 |
+
|
132 |
+
|
133 |
+
Paper mRAT-SQL-FIT
|
134 |
+
|
135 |
+
|
136 |
+
* mT5-large trained in English 51Ksteps
|
137 |
+
* Checkpoint: [50100](https://drive.google.com/file/d/1BZ519XxYtXpxxO1iiBy8kSLG4eq34yEX/view?usp=sharing)
|
138 |
+
* Inference - English: [ESM all: 0.684](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-train/spider_eval_match_ratsqlgap-mT5-large-en-train_en-eval-step50100.txt)
|
139 |
+
|
140 |
+
* mT5-large trained in English, Portuguese, Spanish and French (together) 51Ksteps - just best inferences
|
141 |
+
* Checkpoint: [51100](https://drive.google.com/file/d/1GSQX0dJlsipQPBvYrBqY0SMFhFGCTW0E/view?usp=sharing)
|
142 |
+
* Inference - English: [ESM all: 0.715](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-51Ksteps-train/51100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_en-eval-step51100.txt)
|
143 |
+
* Checkpoint: [42100](https://drive.google.com/file/d/1qx2QeZhoygCstZP_QgtLkTlVfBVHzZin/view?usp=sharing)
|
144 |
+
* Inference - Portuguese: [ESM all: 0.680](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-51Ksteps-train/42100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_pt-eval-step42100.txt)
|
145 |
+
* Checkpoint: [50100](https://drive.google.com/file/d/1eDm7SHz2il1RYryGLSYVGxt-ozHugJcf/view?usp=sharing)
|
146 |
+
* Inference - Spanish: [ESM all: 0.660](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-51Ksteps-train/50100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_es-eval-step50100.txt)
|
147 |
+
* Inference - French: [ESM all: 0.672](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-51Ksteps-train/50100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_fr-eval-step50100.txt)
|
148 |
+
|
149 |
+
|
150 |
+
* mT5-large trained in English, Portuguese, Spanish and French (together) 120Ksteps - just best inferences
|
151 |
+
* Checkpoint: [77500](https://drive.google.com/file/d/1eUYr_i5O9U1ldm_pBdGozmiRt_42BCh8/view?usp=sharing)
|
152 |
+
* Inference - English: [ESM all: 0.718](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-120Ksteps-train//77500/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_Div-en-eval-step77500.txt)
|
153 |
+
* Checkpoint: [85500](https://drive.google.com/file/d/1n55OlnyE3RDQtUXMHPwC99Za0xfQavrK/view?usp=sharing)
|
154 |
+
* Inference - Portuguese: [ESM all: 0.675](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-120Ksteps-train//85500/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_Div-pt-eval-step85500.txt)
|
155 |
+
* Checkpoint: [76500](https://drive.google.com/file/d/1Qs-f2gIgWTJWiWrYGsiULxTBwwpgGatc/view?usp=sharing)
|
156 |
+
* Inference - Spanish: [ESM all: 0.675](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-120Ksteps-train//76500/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_Div-es-eval-step76500.txt)
|
157 |
+
* Checkpoint: [67500](https://drive.google.com/file/d/1cpTEXMhJXVbJfDc8sW1nfSX91p5VSJtn/view?usp=sharing)
|
158 |
+
* Inference - French: [ESM all: 0.681](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-120Ksteps-train//67500/spider_eval_match_ratsqlgap-mT5-large-NoGAP-en-pt-es-fr-train_Div-fr-eval-step67500.txt)
|
159 |
+
|
160 |
+
|
161 |
+
* mT5-large trained in English, Portuguese, Spanish and French (together) FIT 120Ksteps - just best inferences
|
162 |
+
* Checkpoint: [105100](https://drive.google.com/file/d/1h0knsFfD6XCXxoEVSFR_I1WdYvMOkcvA/view?usp=sharing)
|
163 |
+
* Inference - English: (simplemma.load_data('en','pt','es','fr')): [ESM all: 0.735 Best inferences in English](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-en-pt-es-fr-120Ksteps-train//105100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-120Ksteps-FIT-en-pt-es-fr_Div-en-eval-step105100.txt)
|
164 |
+
* Inference - English: (simplemma.load_data('en'): [ESM all: 0.736 Best inferences in English](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-en-pt-es-fr-120Ksteps-train//105100/0.736/spider_eval_match_ratsqlgap-mT5-large-NoGAP-120Ksteps-FIT-en-pt-es-fr_Div-en-eval-step105100.txt)
|
165 |
+
* Checkpoint: [102100](https://drive.google.com/file/d/1VCfLnQgZsrb8lJFkhxzPoyfqc7dEY_K-/view?usp=sharing)
|
166 |
+
* Inference - Portuguese: [ESM all: 0.687](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-en-pt-es-fr-120Ksteps-train//102100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-120Ksteps-FIT-en-pt-es-fr_Div-pt-eval-step102100.txt)
|
167 |
+
* Checkpoint: [114100](https://drive.google.com/file/d/13DIB5p97bUnquLpd-dO0-Q1bA9LWjIXD/view?usp=sharing)
|
168 |
+
* Inference - Spanish: [ESM all: 0.689](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-en-pt-es-fr-120Ksteps-train//114100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-120Ksteps-FIT-en-pt-es-fr_Div-es-eval-step114100.txt)
|
169 |
+
* Inference - French: [ESM all: 0.698](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-en-pt-es-fr-120Ksteps-train//114100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-120Ksteps-FIT-en-pt-es-fr_Div-fr-eval-step114100.txt)
|
170 |
+
|
171 |
+
|
172 |
+
* mT5-large trained in English, Portuguese, Spanish and French (together) 2048TKs - 480Ksteps - just inference in English
|
173 |
+
* Checkpoint: [290100](https://drive.google.com/file/d/19Uvfw7QL-8i3yKvybRe9ADLDuSa-MeJv/view?usp=sharing)
|
174 |
+
* Inference - English: [ESM all: 0.697](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-en-pt-es-fr-2048TKs-480Ksteps-train/290100/spider_eval_match_ratsqlgap-mT5-large-2048TKs-en-pt-es-fr_Div-en-eval-step290100.txt)
|
175 |
+
|
176 |
+
|
177 |
+
Other Best Results
|
178 |
+
* T5-v1_1-large trained in English FIT 150Ksteps
|
179 |
+
* Checkpoint: [150300](https://drive.google.com/file/d/14iAERUfhNdU7Gdx9gD9HGuGrnumHaPtq/view?usp=sharing)
|
180 |
+
* Inference - English: [ESM all: 0.736](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/T5-v1_1-large-FIT-en-150Ksteps-train/spider_eval_match_ratsqlgap-T5-v1_1-large-NoGAP-150Ksteps-FIT-en_One-en-eval-step150300.txt)
|
181 |
+
|
182 |
+
* mT5-large trained in English, Portuguese, Spanish and French (together) + Non Linear Data Augmentation by rules for extra question 3enr-3ptr-3esr-3frr FIT 150Ksteps
|
183 |
+
* Checkpoint: [128100](https://drive.google.com/file/d/1OjBr9CR0B9feRuk5-Wjh5VpAosB15uNR/view?usp=sharing)
|
184 |
+
* Inference - English: [ESM all: 0.726](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-extra-150Ksteps-train/128100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-150Ksteps-FIT-en-pt-es-fr-extra-3enr-3ptr-3esr-3frr_Div-en-eval-step128100.txt)
|
185 |
+
* Checkpoint: [125100](https://drive.google.com/file/d/1bLkTK7qJmwQatK_r6tjSmo6fYYtR4oJ3/view?usp=sharing)
|
186 |
+
* Inference - Portuguese: [ESM all: 0.698](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-extra-150Ksteps-train/125100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-150Ksteps-FIT-en-pt-es-fr-extra-3enr-3ptr-3esr-3frr_Div-pt-eval-step125100.txt)
|
187 |
+
* Inference - French: [ESM all: 0.700](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-extra-150Ksteps-train/125100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-150Ksteps-FIT-en-pt-es-fr-extra-3enr-3ptr-3esr-3frr_Div-fr-eval-step125100.txt)
|
188 |
+
|
189 |
+
* Checkpoint: [136100](https://drive.google.com/file/d/1zAcHQS0iNOXRm4iaiqybuAFETfitwBnR/view?usp=sharing)
|
190 |
+
* Inference - Spanish: [ESM all: 0.691](https://github.com/C4AI/gap-text2sql/blob/main/mrat-sql-gap/inference-results/mT5-large-FIT-extra-150Ksteps-train/136100/spider_eval_match_ratsqlgap-mT5-large-NoGAP-150Ksteps-FIT-en-pt-es-fr-extra-3enr-3ptr-3esr-3frr_Div-es-eval-step136100.txt)
|
191 |
+
|
192 |
+
## Results
|
193 |
+
|
194 |
+
All intermediate files of the results are in the directory [inference-results](https://github.com/C4AI/gap-text2sql/tree/main/mrat-sql-gap/inference-results).
|
195 |
+
|
196 |
+
## Security
|
197 |
+
|
198 |
+
See [CONTRIBUTING](CONTRIBUTING.md#security-issue-notifications) for more information.
|
199 |
+
|
200 |
+
## License
|
201 |
+
|
202 |
+
This project is licensed under the Apache-2.0 License.
|