import logging import os import pickle import time import json from dataclasses import dataclass from typing import Any, Dict, List, NewType, Tuple from tqdm import tqdm import torch from torch.utils.data.dataset import Dataset from transformers.tokenization_utils import PreTrainedTokenizer from transformers.data.data_collator import DataCollator from transformers.tokenization_bart import BartTokenizer from transformers.tokenization_roberta import RobertaTokenizer from relogic.pretrainkit.datasets.utils import pad_and_tensorize_sequence logger = logging.getLogger(__name__) label_mapping = json.load(open("data/preprocessed_data/bart_parser_label_mapping_2.json")) class QuerySchemaRelation2SQLDataset(Dataset): """ Dataset for relation-aware text-to-SQL: query + schema + relation -> SQL """ def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, local_rank=-1): self.examples = [] self.keywords = label_mapping["keyword"] self.label_eos_id = self.keywords.index(label_mapping["label_eos_token"]) self.label_bos_id = self.keywords.index(label_mapping["label_bos_token"]) add_prefix_space = isinstance(tokenizer, BartTokenizer) or isinstance(tokenizer, RobertaTokenizer) total, valid = 0, 0 with open(file_path, encoding="utf-8") as f: for line in tqdm(f): total += 1 example = json.loads(line) text = example["normalized_question"] columns = example["columns"] tables = example["tables"] columns_text = example["column_text"] tables_text = example["table_text"] sql = example["sql"] # we need the adjusted token index info. token_idx_to_sub_token_start_idx = {} text_tokens = [tokenizer.cls_token] start_idx = 0 # This is for adjusting the sc_link and cv_link for idx, token in enumerate(text.split()): sub_tokens = tokenizer.tokenize(token, add_prefix_space=add_prefix_space) token_idx_to_sub_token_start_idx[idx] = start_idx text_tokens.extend(sub_tokens) start_idx += len(sub_tokens) text_tokens.append(tokenizer.sep_token) question_start, question_end = 1, len(text_tokens) - 1 # exclusive column_spans = [] start_idx = len(text_tokens) for column_tokens in columns_text: column_str = " ".join(column_tokens) column_tokens = tokenizer.tokenize(column_str, add_prefix_space=add_prefix_space) text_tokens.extend(column_tokens) text_tokens.append(tokenizer.sep_token) end_idx = start_idx + len(column_tokens) column_spans.append((start_idx, end_idx)) start_idx = end_idx + 1 column_start = [column_span[0] for column_span in column_spans] column_end = [column_span[1] for column_span in column_spans] table_spans = [] start_idx = len(text_tokens) for table_tokens in tables_text: table_str = " ".join(table_tokens) table_tokens = tokenizer.tokenize(table_str, add_prefix_space=add_prefix_space) text_tokens.extend(table_tokens) text_tokens.append(tokenizer.sep_token) end_idx = start_idx + len(table_tokens) table_spans.append((start_idx, end_idx)) start_idx = end_idx + 1 table_start = [table_span[0] for table_span in table_spans] table_end = [table_span[1] for table_span in table_spans] input_ids = tokenizer.convert_tokens_to_ids(text_tokens) if len(input_ids) > block_size: continue label_ids = [] try: for token in sql.split(): if token in columns: label_ids.append(columns.index(token) + len(self.keywords)) else: label_ids.append(self.keywords.index(token)) except: continue label_ids = [self.label_bos_id] + label_ids + [self.label_eos_id] primary_key = [int(x) for x in example["sc_struct"]["primary_key"]] foreign_key = {x.split(",")[0]: int(x.split(",")[1]) for x in example["sc_struct"]["foreign_key"]} column_to_table = {"0": None} sc_link = {"q_col_match": {}, "q_tab_match": {}} for k, v in example["sc_link"]["q_col_match"].items(): new_k = str(token_idx_to_sub_token_start_idx[int(k.split(",")[0])]) + "," + k.split(",")[1] sc_link["q_col_match"][new_k] = v for k, v in example["sc_link"]["q_tab_match"].items(): new_k = str(token_idx_to_sub_token_start_idx[int(k.split(",")[0])]) + "," + k.split(",")[1] sc_link["q_tab_match"][new_k] = v cv_link = {"num_date_match": {}, "cell_match": {}} for k, v in example["cv_link"]["num_date_match"].items(): new_k = str(token_idx_to_sub_token_start_idx[int(k.split(",")[0])]) + "," + k.split(",")[1] cv_link["num_date_match"][new_k] = v for k, v in example["cv_link"]["cell_match"].items(): new_k = str(token_idx_to_sub_token_start_idx[int(k.split(",")[0])]) + "," + k.split(",")[1] cv_link["cell_match"][new_k] = v for idx, column in enumerate(columns): if column == "*": continue t = column.split(".")[0] column_to_table[str(idx)] = tables.index(t) foreign_keys_tables = {} for k, v in foreign_key.items(): t_k = str(column_to_table[str(k)]) t_v = str(column_to_table[str(v)]) if t_k not in foreign_keys_tables: foreign_keys_tables[t_k] = [] if int(t_v) not in foreign_keys_tables[t_k]: foreign_keys_tables[t_k].append(int(t_v)) self.examples.append({ "input_ids": input_ids, "example_info": { "normalized_question": text, "columns": columns, "tables": tables, "tokens": text_tokens, "question_start": question_start, "question_end": question_end, "column_start": torch.LongTensor(column_start), "column_end": torch.LongTensor(column_end), "table_start": torch.LongTensor(table_start), "table_end": torch.LongTensor(table_end), "sc_link": sc_link, "cv_link": cv_link, "primary_keys": primary_key, "foreign_keys": foreign_key, "column_to_table": column_to_table, "foreign_keys_tables": foreign_keys_tables }, "column_spans": column_spans, "label_ids": label_ids}) valid += 1 print("Valid Example {}; Invalid Example {}".format(valid, total - valid)) def __len__(self): return len(self.examples) def __getitem__(self, i): return self.examples[i] @dataclass class DataCollatorForQuerySchemaRelation2SQL: """ Data collator used for query + schema -> sql modeling. """ tokenizer: PreTrainedTokenizer label_padding_id = label_mapping["keyword"].index(label_mapping["label_padding_token"]) label_eos_id = label_mapping["keyword"].index(label_mapping["label_eos_token"]) label_bos_id = label_mapping["keyword"].index(label_mapping["label_bos_token"]) def collate_batch(self, examples) -> Dict[str, torch.Tensor]: input_ids_sequences = [example["input_ids"] for example in examples] column_spans_sequences = [example["column_spans"] for example in examples] label_ids_sequences = [example["label_ids"] for example in examples] padded_input_ids_tensor = pad_and_tensorize_sequence( input_ids_sequences, padding_value=self.tokenizer.pad_token_id) padded_column_spans_tensor = pad_and_tensorize_sequence( column_spans_sequences, padding_value=(0, 1)) example_info_list = [] for example in examples: example_info_list.append(example["example_info"]) label_ids_tensor = pad_and_tensorize_sequence( label_ids_sequences, padding_value=self.label_padding_id) return { "input_ids": padded_input_ids_tensor, "column_spans": padded_column_spans_tensor, "labels": label_ids_tensor, "example_info_list": example_info_list, "input_padding_id": self.tokenizer.pad_token_id, "label_padding_id": self.label_padding_id, "label_eos_id": self.label_eos_id, "label_bos_id": self.label_bos_id }