import logging import os from tqdm import tqdm import json from dataclasses import dataclass from transformers.tokenization_bart import BartTokenizer from transformers.tokenization_roberta import RobertaTokenizer from transformers.tokenization_utils import PreTrainedTokenizer from relogic.pretrainkit.datasets.utils import pad_and_tensorize_sequence from torch.utils.data.dataset import Dataset import random logger = logging.getLogger(__name__) class Entity2QueryDataset(Dataset): """ Dataset for training task: SQL (+ schema) -> text """ def __init__(self, tokenizer: PreTrainedTokenizer, file_path, block_size, local_rank=-1): assert os.path.isfile(file_path) logger.info("Creating features from dataset file at {}".format(file_path)) self.examples = [] total, valid = 0, 0 add_prefix_space = isinstance(tokenizer, BartTokenizer) or isinstance(tokenizer, RobertaTokenizer) with open(file_path, encoding="utf-8") as f: for line in tqdm(f): total += 1 example = json.loads(line) control_code = example["control_code"] entities = example["entities"] if len(entities) == 1 and "*" in entities: continue text = example["question"].strip() text_tokens = [tokenizer.cls_token] + tokenizer.tokenize(text, add_prefix_space=add_prefix_space) + [tokenizer.sep_token] text_token_ids = tokenizer.convert_tokens_to_ids(text_tokens) self.examples.append({ "control_code": control_code, "entities": entities, "text_token_ids": text_token_ids}) logger.info("Total {} examples.".format(total)) def __len__(self): return len(self.examples) def __getitem__(self, i): return self.examples[i] @dataclass class DataCollatorForEntity2Query: """ """ tokenizer: PreTrainedTokenizer def __post_init__(self): self.label_bos_id = self.tokenizer.cls_token_id self.label_eos_id = self.tokenizer.sep_token_id def collate_batch(self, examples): text_ids_sequences = [example["text_token_ids"] for example in examples] padded_text_ids_tensor = pad_and_tensorize_sequence( text_ids_sequences, padding_value=self.tokenizer.pad_token_id) entity_token_ids_sequences = [] for example in examples: entity_sequence = [] entity_tokens = [] if len(example["control_code"]) == 0: entity_sequence.append("null") else: entity_sequence.append(" ".join(example["control_code"])) entity_list = list(example["entities"].items()) random.shuffle(entity_list) for entity in entity_list: entity_text = entity[0].replace("_", " ") + " | "+ " | ".join(entity[1]) entity_sequence.append(entity_text) for sub_seq in entity_sequence: entity_tokens.extend(self.tokenizer.tokenize(sub_seq.lower(), add_prefix_space=True)) entity_tokens.append(self.tokenizer.sep_token) entity_token_ids_sequences.append(self.tokenizer.convert_tokens_to_ids(entity_tokens)) padded_sql_ids_tensor = pad_and_tensorize_sequence( entity_token_ids_sequences, padding_value=self.tokenizer.pad_token_id) return { "input_ids": padded_sql_ids_tensor, "labels": padded_text_ids_tensor, "pad_token_id": self.tokenizer.pad_token_id, "label_eos_id": self.label_eos_id, "label_bos_id": self.label_bos_id, "label_padding_id": self.tokenizer.pad_token_id }