cafernandez commited on
Commit
52153fb
·
verified ·
1 Parent(s): 20012a1

results after training

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.53 +/- 23.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1eabcdb6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1eabcdb760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1eabcdb7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1eabcdb880>", "_build": "<function ActorCriticPolicy._build at 0x7d1eabcdb910>", "forward": "<function ActorCriticPolicy.forward at 0x7d1eabcdb9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1eabcdba30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1eabcdbac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d1eabcdbb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1eabcdbbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1eabcdbc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1eabcdbd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1eabe6a880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721471563866362332, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB34d77aEg8/e919Prz2f74TFyy8IN7hPAAAAAAAAAAATSY6vcNBRbp4YWa7ntopOHd9GbqB+gs6AACAPwAAgD8AK/I8w7lgukejNTvQ0/A3184TuoDW7rkAAIA/AACAP2ZEa72P/ji6/7VEOx//yzegDGy6dQAWugAAgD8AAIA/mhwCvSlZErxTvOk8QwEBPWEEZz3VDdK9AACAPwAAgD8Avkw99rQSut6fjrljCdm0ukDNO2bjqDgAAIA/AACAP2ZiYLwo2I+8WB76PKF5z70ligC+U2WnvgAAgD8AAIA/TfZKvdIjyrvyoow8BBCJPLqpOz27Cmi9AACAPwAAgD86JAs+9sRuuhC72DozFxk2IQYBusNE/LkAAIA/AACAP2Zu+zvhHJW6taI3O6YiWDYsy7868lFUugAAgD8AAIA/za4jvI8+Hbr6zDE4ZGEWMx2ZoToIVk23AACAPwAAgD+APSu9XPM/uugnUzW3C7owyQaRulDMX7QAAIA/AACAP5ou5jyux9O4TyXAOv2WTTaGfoI7K/TluQAAgD8AAIA/htZavuqzGD96Okk+D7yivvH7dr228F4+AAAAAAAAAADN9Hg8UsjYuUp4/LsX2jk2wz0PO3A6qbUAAIA/AACAP5prLL1Au7s+8gNOPJVnKb7WJ/S4KAyHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGKzBLoOhCeMAWyUTegDjAF0lEdAmDWZrpJPInV9lChoBkdAZ3DkVeruIGgHTegDaAhHQJg8GbG3nZF1fZQoaAZHQGB/IR7JGONoB03oA2gIR0CYRFM495hSdX2UKGgGR0BkynVwxWT5aAdN6ANoCEdAmEsXIp6QeXV9lChoBkdAYpTzT4L1EmgHTegDaAhHQJhPiS3b2151fZQoaAZHQGVdtGEwnIBoB03oA2gIR0CYVmEc81XOdX2UKGgGR0Bjzqde6ZpjaAdN6ANoCEdAmFaXX2/SIHV9lChoBkdAY1zsKsuFpWgHTegDaAhHQJhXuXa8HwB1fZQoaAZHQEkPLK3d9DxoB0vUaAhHQJhalxuKoAJ1fZQoaAZHQGXvbQTmGM5oB03oA2gIR0CYXZTgVGkOdX2UKGgGR0BigvJeVs1saAdN6ANoCEdAmF94R/ViF3V9lChoBkdAYoEn4O+ZgGgHTegDaAhHQJhfzL6k6911fZQoaAZHQF1tEzwc5sFoB03oA2gIR0CYZPiVB2OidX2UKGgGR0BkVhh+fAbiaAdN6ANoCEdAmGWUe2d/a3V9lChoBkdAYicOOsDGLmgHTegDaAhHQJhl8zbeuV51fZQoaAZHQGViV3dKujhoB03oA2gIR0CYZm+BpYcOdX2UKGgGR0BiNFitq59WaAdN6ANoCEdAmGnqqXF98nV9lChoBkdAZNmNbTtsvmgHTegDaAhHQJiAJKjBVMp1fZQoaAZHQGIRPK2a2F5oB03oA2gIR0CYiJiVB2OidX2UKGgGR0BgvhPVNHpbaAdN6ANoCEdAmJIkSqU/wHV9lChoBkdAY0g6qbSZ0GgHTegDaAhHQJiXwxwhnrZ1fZQoaAZHQF+2rzoUzsRoB03oA2gIR0CYo+p6hQFcdX2UKGgGR0BY7gZGax5caAdN6ANoCEdAmKQsqvvBrXV9lChoBkdAYIHUADJU52gHTegDaAhHQJilfkYGdI51fZQoaAZHQFnzM0gr6LxoB03oA2gIR0CYqNNhVlwtdX2UKGgGR0BmNQgV45cUaAdN6ANoCEdAmKxrbYbsGHV9lChoBkdAZCbL8rI5pGgHTegDaAhHQJiu+8brC3x1fZQoaAZHQGRDdGy5Zr5oB03oA2gIR0CYr3CU5dWydX2UKGgGR0BjWrSy+pOvaAdN6ANoCEdAmLad5D7ZWnV9lChoBkdAZxdiBoVVP2gHTegDaAhHQJi3ZgCwKSh1fZQoaAZHQGC175uZThpoB03oA2gIR0CYt+N5+pfhdX2UKGgGR0Bm9tqJuVHGaAdN6ANoCEdAmLhTkhib2HV9lChoBkdAYYuxTKkl/2gHTegDaAhHQJi7htygf2d1fZQoaAZHQGLvyTQmeDpoB03oA2gIR0CYz4utOmBOdX2UKGgGR0Bl8k+JP69CaAdN6ANoCEdAmNZk0SAYpHV9lChoBkdAZ7rMfRu0kWgHTegDaAhHQJjfByzXz191fZQoaAZHQGVWtn5BTn9oB03oA2gIR0CY5k1ie/YbdX2UKGgGR0BlML1mJ3xGaAdN6ANoCEdAmPPg5imVJXV9lChoBkdAYhNCpm29c2gHTegDaAhHQJj0H+o99tx1fZQoaAZHQGRwhTn7pFFoB03oA2gIR0CY9WqL0jC6dX2UKGgGR0BmTi4tpVS5aAdN6ANoCEdAmPiCzsyBTXV9lChoBkdAYKVaews5GWgHTegDaAhHQJj7wjdHlOp1fZQoaAZHQGGiHiFTNt9oB03oA2gIR0CY/ZuhbnoxdX2UKGgGR0BjotGwzLwGaAdN6ANoCEdAmP32qYJE6XV9lChoBkdAYq5QUpNKy2gHTegDaAhHQJkDPZpSJj51fZQoaAZHQGPdEZR8+idoB03oA2gIR0CZA8T6SDAadX2UKGgGR0Bkl0HUtqYaaAdN6ANoCEdAmQQdQCSzPnV9lChoBkdAX8uaAnUlRmgHTegDaAhHQJkEkbLlmvp1fZQoaAZHQEYTSNOuaF5oB0v8aAhHQJkFaV4X40x1fZQoaAZHQGRz1qnFYMhoB03oA2gIR0CZB6wD/2kBdX2UKGgGR0A9OnP3SKFaaAdNDwFoCEdAmQj3i3ocJnV9lChoBkdAZ2KTtb9qDmgHTegDaAhHQJkKHpC8e0Z1fZQoaAZHQGHGpdjXnQpoB03oA2gIR0CZJPfFaSs9dX2UKGgGR0BdWBz/6wdKaAdN6ANoCEdAmS2CyD7Ik3V9lChoBkdAYxF0yxiXpmgHTegDaAhHQJkzBJe3QUp1fZQoaAZHQGLrzlLeyiVoB03oA2gIR0CZPwWj4593dX2UKGgGR0BiFyFPBSDRaAdN6ANoCEdAmT9D2zv7WXV9lChoBkdAZX2I0IkZ8GgHTegDaAhHQJlAjhNucc51fZQoaAZHQF/gCnP3SKFoB03oA2gIR0CZStdSVGCqdX2UKGgGR0BiOb3Gn4wiaAdN6ANoCEdAmUt1D8cdYHV9lChoBkdAY3HL+PzWgGgHTegDaAhHQJlTdf2K2rp1fZQoaAZHQF+KdjG1hLJoB03oA2gIR0CZVAyGzru6dX2UKGgGR0BhgSz9jwx4aAdN6ANoCEdAmVRtuDSPVHV9lChoBkdAZ0dGACnxa2gHTegDaAhHQJlU7+sHSnd1fZQoaAZHQGFLzLfUF0RoB03oA2gIR0CZVec2zfJndX2UKGgGR0BlJJj8UEgXaAdN6ANoCEdAmVhnlbNbDHV9lChoBkdAZT+SJ0nw5WgHTegDaAhHQJlZx+UhV2l1fZQoaAZHQGE3Zq20AtFoB03oA2gIR0CZWuwfQrtmdX2UKGgGR0BOPmZNO/L1aAdL6GgIR0CZcmYuCf6HdX2UKGgGR0BlSu0TlDF7aAdN6ANoCEdAmXLFN5+pfnV9lChoBkdAYgBO/L1VYWgHTegDaAhHQJl7GGfwqiJ1fZQoaAZHQGCYmlyimEZoB03oA2gIR0CZgqhPTG5udX2UKGgGR0BlFzpzLfUGaAdN6ANoCEdAmZAdBWxQi3V9lChoBkdAYE/ayKNyYGgHTegDaAhHQJmQW+De0ol1fZQoaAZHQGJnWvKU3XJoB03oA2gIR0CZkbCF9KEndX2UKGgGR0BnTq8SPEKmaAdN6ANoCEdAmZqrvsqrinV9lChoBkdAXyU+8oQWe2gHTegDaAhHQJmbFMlC1JF1fZQoaAZHQGRF+AEt/WloB03oA2gIR0CZoQ1xbSqmdX2UKGgGR0Blf8DdP+GXaAdN6ANoCEdAmaGdD2Jzk3V9lChoBkdAYeO9HMEA52gHTegDaAhHQJmiCdK/VRV1fZQoaAZHQGSEfjjrAxloB03oA2gIR0CZopGjKxLTdX2UKGgGR0BiK8ornTy8aAdN6ANoCEdAmaYGBvrGBHV9lChoBkdAZMbGCqZMMGgHTegDaAhHQJmnedQO4G51fZQoaAZHQGM6G6XjU/hoB03oA2gIR0CZqI9qUNaydX2UKGgGR0A+U9kz41xbaAdNCQFoCEdAmcRyjk+5fHV9lChoBkdAYnGla8pTdmgHTegDaAhHQJnFXuRcNYt1fZQoaAZHQGF8Xy7PIGRoB03oA2gIR0CZxdMg2ZRbdX2UKGgGR0Bplu4Ajps5aAdN6ANoCEdAmc5YIWxhUnV9lChoBkdAYxrn1WbPQmgHTegDaAhHQJnTc+/xlQN1fZQoaAZHQGfLvMbFS89oB03oA2gIR0CZ30D3/PxAdX2UKGgGR0BjKdX7tRekaAdN6ANoCEdAmd9/wRXfZXV9lChoBkdAY4tlzU7SzGgHTegDaAhHQJng0LSeAd51fZQoaAZHQGhQRB/qgRNoB03oA2gIR0CZ7MGgzxgBdX2UKGgGR0BiO6Q/5ckdaAdN6ANoCEdAme1VuBMBZXV9lChoBkdAYI6jEehf0GgHTegDaAhHQJn0S5TZQHl1fZQoaAZHQGIVmWdEsrdoB03oA2gIR0CZ9LREWqLkdX2UKGgGR0Bn+XYHxBmgaAdN6ANoCEdAmfVFNUOuq3V9lChoBkdAZfO2MKkVOGgHTegDaAhHQJn4wk1Mue11fZQoaAZHQGMVnqFAVwhoB03oA2gIR0CZ+jpD/lySdX2UKGgGR0BgMK7wrlNlaAdN6ANoCEdAmftr8R+SbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9944a1411bd848547603ae466d7c4a23b488088498aa1f1cf6ae130d6dd74d25
3
+ size 148084
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1eabcdb6d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1eabcdb760>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1eabcdb7f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1eabcdb880>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d1eabcdb910>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d1eabcdb9a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1eabcdba30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1eabcdbac0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d1eabcdbb50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1eabcdbbe0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1eabcdbc70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1eabcdbd00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d1eabe6a880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1721471563866362332,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB34d77aEg8/e919Prz2f74TFyy8IN7hPAAAAAAAAAAATSY6vcNBRbp4YWa7ntopOHd9GbqB+gs6AACAPwAAgD8AK/I8w7lgukejNTvQ0/A3184TuoDW7rkAAIA/AACAP2ZEa72P/ji6/7VEOx//yzegDGy6dQAWugAAgD8AAIA/mhwCvSlZErxTvOk8QwEBPWEEZz3VDdK9AACAPwAAgD8Avkw99rQSut6fjrljCdm0ukDNO2bjqDgAAIA/AACAP2ZiYLwo2I+8WB76PKF5z70ligC+U2WnvgAAgD8AAIA/TfZKvdIjyrvyoow8BBCJPLqpOz27Cmi9AACAPwAAgD86JAs+9sRuuhC72DozFxk2IQYBusNE/LkAAIA/AACAP2Zu+zvhHJW6taI3O6YiWDYsy7868lFUugAAgD8AAIA/za4jvI8+Hbr6zDE4ZGEWMx2ZoToIVk23AACAPwAAgD+APSu9XPM/uugnUzW3C7owyQaRulDMX7QAAIA/AACAP5ou5jyux9O4TyXAOv2WTTaGfoI7K/TluQAAgD8AAIA/htZavuqzGD96Okk+D7yivvH7dr228F4+AAAAAAAAAADN9Hg8UsjYuUp4/LsX2jk2wz0PO3A6qbUAAIA/AACAP5prLL1Au7s+8gNOPJVnKb7WJ/S4KAyHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGKzBLoOhCeMAWyUTegDjAF0lEdAmDWZrpJPInV9lChoBkdAZ3DkVeruIGgHTegDaAhHQJg8GbG3nZF1fZQoaAZHQGB/IR7JGONoB03oA2gIR0CYRFM495hSdX2UKGgGR0BkynVwxWT5aAdN6ANoCEdAmEsXIp6QeXV9lChoBkdAYpTzT4L1EmgHTegDaAhHQJhPiS3b2151fZQoaAZHQGVdtGEwnIBoB03oA2gIR0CYVmEc81XOdX2UKGgGR0Bjzqde6ZpjaAdN6ANoCEdAmFaXX2/SIHV9lChoBkdAY1zsKsuFpWgHTegDaAhHQJhXuXa8HwB1fZQoaAZHQEkPLK3d9DxoB0vUaAhHQJhalxuKoAJ1fZQoaAZHQGXvbQTmGM5oB03oA2gIR0CYXZTgVGkOdX2UKGgGR0BigvJeVs1saAdN6ANoCEdAmF94R/ViF3V9lChoBkdAYoEn4O+ZgGgHTegDaAhHQJhfzL6k6911fZQoaAZHQF1tEzwc5sFoB03oA2gIR0CYZPiVB2OidX2UKGgGR0BkVhh+fAbiaAdN6ANoCEdAmGWUe2d/a3V9lChoBkdAYicOOsDGLmgHTegDaAhHQJhl8zbeuV51fZQoaAZHQGViV3dKujhoB03oA2gIR0CYZm+BpYcOdX2UKGgGR0BiNFitq59WaAdN6ANoCEdAmGnqqXF98nV9lChoBkdAZNmNbTtsvmgHTegDaAhHQJiAJKjBVMp1fZQoaAZHQGIRPK2a2F5oB03oA2gIR0CYiJiVB2OidX2UKGgGR0BgvhPVNHpbaAdN6ANoCEdAmJIkSqU/wHV9lChoBkdAY0g6qbSZ0GgHTegDaAhHQJiXwxwhnrZ1fZQoaAZHQF+2rzoUzsRoB03oA2gIR0CYo+p6hQFcdX2UKGgGR0BY7gZGax5caAdN6ANoCEdAmKQsqvvBrXV9lChoBkdAYIHUADJU52gHTegDaAhHQJilfkYGdI51fZQoaAZHQFnzM0gr6LxoB03oA2gIR0CYqNNhVlwtdX2UKGgGR0BmNQgV45cUaAdN6ANoCEdAmKxrbYbsGHV9lChoBkdAZCbL8rI5pGgHTegDaAhHQJiu+8brC3x1fZQoaAZHQGRDdGy5Zr5oB03oA2gIR0CYr3CU5dWydX2UKGgGR0BjWrSy+pOvaAdN6ANoCEdAmLad5D7ZWnV9lChoBkdAZxdiBoVVP2gHTegDaAhHQJi3ZgCwKSh1fZQoaAZHQGC175uZThpoB03oA2gIR0CYt+N5+pfhdX2UKGgGR0Bm9tqJuVHGaAdN6ANoCEdAmLhTkhib2HV9lChoBkdAYYuxTKkl/2gHTegDaAhHQJi7htygf2d1fZQoaAZHQGLvyTQmeDpoB03oA2gIR0CYz4utOmBOdX2UKGgGR0Bl8k+JP69CaAdN6ANoCEdAmNZk0SAYpHV9lChoBkdAZ7rMfRu0kWgHTegDaAhHQJjfByzXz191fZQoaAZHQGVWtn5BTn9oB03oA2gIR0CY5k1ie/YbdX2UKGgGR0BlML1mJ3xGaAdN6ANoCEdAmPPg5imVJXV9lChoBkdAYhNCpm29c2gHTegDaAhHQJj0H+o99tx1fZQoaAZHQGRwhTn7pFFoB03oA2gIR0CY9WqL0jC6dX2UKGgGR0BmTi4tpVS5aAdN6ANoCEdAmPiCzsyBTXV9lChoBkdAYKVaews5GWgHTegDaAhHQJj7wjdHlOp1fZQoaAZHQGGiHiFTNt9oB03oA2gIR0CY/ZuhbnoxdX2UKGgGR0BjotGwzLwGaAdN6ANoCEdAmP32qYJE6XV9lChoBkdAYq5QUpNKy2gHTegDaAhHQJkDPZpSJj51fZQoaAZHQGPdEZR8+idoB03oA2gIR0CZA8T6SDAadX2UKGgGR0Bkl0HUtqYaaAdN6ANoCEdAmQQdQCSzPnV9lChoBkdAX8uaAnUlRmgHTegDaAhHQJkEkbLlmvp1fZQoaAZHQEYTSNOuaF5oB0v8aAhHQJkFaV4X40x1fZQoaAZHQGRz1qnFYMhoB03oA2gIR0CZB6wD/2kBdX2UKGgGR0A9OnP3SKFaaAdNDwFoCEdAmQj3i3ocJnV9lChoBkdAZ2KTtb9qDmgHTegDaAhHQJkKHpC8e0Z1fZQoaAZHQGHGpdjXnQpoB03oA2gIR0CZJPfFaSs9dX2UKGgGR0BdWBz/6wdKaAdN6ANoCEdAmS2CyD7Ik3V9lChoBkdAYxF0yxiXpmgHTegDaAhHQJkzBJe3QUp1fZQoaAZHQGLrzlLeyiVoB03oA2gIR0CZPwWj4593dX2UKGgGR0BiFyFPBSDRaAdN6ANoCEdAmT9D2zv7WXV9lChoBkdAZX2I0IkZ8GgHTegDaAhHQJlAjhNucc51fZQoaAZHQF/gCnP3SKFoB03oA2gIR0CZStdSVGCqdX2UKGgGR0BiOb3Gn4wiaAdN6ANoCEdAmUt1D8cdYHV9lChoBkdAY3HL+PzWgGgHTegDaAhHQJlTdf2K2rp1fZQoaAZHQF+KdjG1hLJoB03oA2gIR0CZVAyGzru6dX2UKGgGR0BhgSz9jwx4aAdN6ANoCEdAmVRtuDSPVHV9lChoBkdAZ0dGACnxa2gHTegDaAhHQJlU7+sHSnd1fZQoaAZHQGFLzLfUF0RoB03oA2gIR0CZVec2zfJndX2UKGgGR0BlJJj8UEgXaAdN6ANoCEdAmVhnlbNbDHV9lChoBkdAZT+SJ0nw5WgHTegDaAhHQJlZx+UhV2l1fZQoaAZHQGE3Zq20AtFoB03oA2gIR0CZWuwfQrtmdX2UKGgGR0BOPmZNO/L1aAdL6GgIR0CZcmYuCf6HdX2UKGgGR0BlSu0TlDF7aAdN6ANoCEdAmXLFN5+pfnV9lChoBkdAYgBO/L1VYWgHTegDaAhHQJl7GGfwqiJ1fZQoaAZHQGCYmlyimEZoB03oA2gIR0CZgqhPTG5udX2UKGgGR0BlFzpzLfUGaAdN6ANoCEdAmZAdBWxQi3V9lChoBkdAYE/ayKNyYGgHTegDaAhHQJmQW+De0ol1fZQoaAZHQGJnWvKU3XJoB03oA2gIR0CZkbCF9KEndX2UKGgGR0BnTq8SPEKmaAdN6ANoCEdAmZqrvsqrinV9lChoBkdAXyU+8oQWe2gHTegDaAhHQJmbFMlC1JF1fZQoaAZHQGRF+AEt/WloB03oA2gIR0CZoQ1xbSqmdX2UKGgGR0Blf8DdP+GXaAdN6ANoCEdAmaGdD2Jzk3V9lChoBkdAYeO9HMEA52gHTegDaAhHQJmiCdK/VRV1fZQoaAZHQGSEfjjrAxloB03oA2gIR0CZopGjKxLTdX2UKGgGR0BiK8ornTy8aAdN6ANoCEdAmaYGBvrGBHV9lChoBkdAZMbGCqZMMGgHTegDaAhHQJmnedQO4G51fZQoaAZHQGM6G6XjU/hoB03oA2gIR0CZqI9qUNaydX2UKGgGR0A+U9kz41xbaAdNCQFoCEdAmcRyjk+5fHV9lChoBkdAYnGla8pTdmgHTegDaAhHQJnFXuRcNYt1fZQoaAZHQGF8Xy7PIGRoB03oA2gIR0CZxdMg2ZRbdX2UKGgGR0Bplu4Ajps5aAdN6ANoCEdAmc5YIWxhUnV9lChoBkdAYxrn1WbPQmgHTegDaAhHQJnTc+/xlQN1fZQoaAZHQGfLvMbFS89oB03oA2gIR0CZ30D3/PxAdX2UKGgGR0BjKdX7tRekaAdN6ANoCEdAmd9/wRXfZXV9lChoBkdAY4tlzU7SzGgHTegDaAhHQJng0LSeAd51fZQoaAZHQGhQRB/qgRNoB03oA2gIR0CZ7MGgzxgBdX2UKGgGR0BiO6Q/5ckdaAdN6ANoCEdAme1VuBMBZXV9lChoBkdAYI6jEehf0GgHTegDaAhHQJn0S5TZQHl1fZQoaAZHQGIVmWdEsrdoB03oA2gIR0CZ9LREWqLkdX2UKGgGR0Bn+XYHxBmgaAdN6ANoCEdAmfVFNUOuq3V9lChoBkdAZfO2MKkVOGgHTegDaAhHQJn4wk1Mue11fZQoaAZHQGMVnqFAVwhoB03oA2gIR0CZ+jpD/lySdX2UKGgGR0BgMK7wrlNlaAdN6ANoCEdAmftr8R+SbHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 252,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ee5384690975965cf829d4f67eccf4f4627ca178f97d48eb67efeba4c4f427d
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8ec9fecffb90fc33364a8c5d450f9c00f33c188de94739bc31c0565ea0d4dab
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (158 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.5313033, "std_reward": 23.738172067276274, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-20T11:07:45.972793"}