caffeinatedcherrychic
commited on
Upload folder using huggingface_hub
Browse files- README.md +166 -0
- adapter_config.json +34 -0
- adapter_model.bin +3 -0
- checkpoint-13/README.md +202 -0
- checkpoint-13/adapter_config.json +34 -0
- checkpoint-13/adapter_model.safetensors +3 -0
- checkpoint-13/optimizer.pt +3 -0
- checkpoint-13/rng_state.pth +3 -0
- checkpoint-13/scheduler.pt +3 -0
- checkpoint-13/trainer_state.json +144 -0
- checkpoint-13/training_args.bin +3 -0
- checkpoint-26/README.md +202 -0
- checkpoint-26/adapter_config.json +34 -0
- checkpoint-26/adapter_model.safetensors +3 -0
- checkpoint-26/optimizer.pt +3 -0
- checkpoint-26/rng_state.pth +3 -0
- checkpoint-26/scheduler.pt +3 -0
- checkpoint-26/trainer_state.json +259 -0
- checkpoint-26/training_args.bin +3 -0
- checkpoint-39/README.md +202 -0
- checkpoint-39/adapter_config.json +34 -0
- checkpoint-39/adapter_model.safetensors +3 -0
- checkpoint-39/optimizer.pt +3 -0
- checkpoint-39/rng_state.pth +3 -0
- checkpoint-39/scheduler.pt +3 -0
- checkpoint-39/trainer_state.json +374 -0
- checkpoint-39/training_args.bin +3 -0
- checkpoint-52/README.md +202 -0
- checkpoint-52/adapter_config.json +34 -0
- checkpoint-52/adapter_model.safetensors +3 -0
- checkpoint-52/optimizer.pt +3 -0
- checkpoint-52/rng_state.pth +3 -0
- checkpoint-52/scheduler.pt +3 -0
- checkpoint-52/trainer_state.json +497 -0
- checkpoint-52/training_args.bin +3 -0
- config.json +40 -0
- merged/config.json +26 -0
- merged/generation_config.json +7 -0
- merged/pytorch_model-00001-of-00003.bin +3 -0
- merged/pytorch_model-00002-of-00003.bin +3 -0
- merged/pytorch_model-00003-of-00003.bin +3 -0
- merged/pytorch_model.bin.index.json +298 -0
- merged/special_tokens_map.json +24 -0
- merged/tokenizer.model +3 -0
- merged/tokenizer_config.json +44 -0
- runs/Apr09_08-29-36_gpu06.pri.dmog.alces.network/events.out.tfevents.1712647777.gpu06.pri.dmog.alces.network.30736.0 +3 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
README.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: mistralai/Mistral-7B-v0.1
|
7 |
+
model-index:
|
8 |
+
- name: qlora-out
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
16 |
+
<details><summary>See axolotl config</summary>
|
17 |
+
|
18 |
+
axolotl version: `0.4.0`
|
19 |
+
```yaml
|
20 |
+
base_model: mistralai/Mistral-7B-v0.1
|
21 |
+
model_type: MistralForCausalLM
|
22 |
+
tokenizer_type: LlamaTokenizer
|
23 |
+
|
24 |
+
load_in_8bit: false
|
25 |
+
load_in_4bit: true
|
26 |
+
strict: false
|
27 |
+
|
28 |
+
datasets:
|
29 |
+
- path: caffeinatedcherrychic/cidds-agg-balanced
|
30 |
+
type: alpaca
|
31 |
+
dataset_prepared_path: last_run_prepared
|
32 |
+
val_set_size: 0.1
|
33 |
+
output_dir: ./qlora-out
|
34 |
+
|
35 |
+
adapter: qlora
|
36 |
+
lora_model_dir:
|
37 |
+
|
38 |
+
sequence_len: 256
|
39 |
+
sample_packing: false
|
40 |
+
pad_to_sequence_len: true
|
41 |
+
|
42 |
+
lora_r: 32
|
43 |
+
lora_alpha: 64
|
44 |
+
lora_dropout: 0.05
|
45 |
+
lora_target_linear: true
|
46 |
+
lora_fan_in_fan_out:
|
47 |
+
lora_target_modules:
|
48 |
+
- gate_proj
|
49 |
+
- down_proj
|
50 |
+
- up_proj
|
51 |
+
- q_proj
|
52 |
+
- v_proj
|
53 |
+
- k_proj
|
54 |
+
- o_proj
|
55 |
+
|
56 |
+
wandb_project:
|
57 |
+
wandb_entity:
|
58 |
+
wandb_watch:
|
59 |
+
wandb_name:
|
60 |
+
wandb_log_model:
|
61 |
+
|
62 |
+
gradient_accumulation_steps: 4
|
63 |
+
micro_batch_size: 2
|
64 |
+
num_epochs: 5
|
65 |
+
optimizer: adamw_bnb_8bit
|
66 |
+
lr_scheduler: cosine
|
67 |
+
learning_rate: 0.0002
|
68 |
+
|
69 |
+
train_on_inputs: false
|
70 |
+
group_by_length: false
|
71 |
+
bf16: true
|
72 |
+
fp16: false
|
73 |
+
tf32: false
|
74 |
+
|
75 |
+
gradient_checkpointing: true
|
76 |
+
early_stopping_patience:
|
77 |
+
resume_from_checkpoint:
|
78 |
+
local_rank:
|
79 |
+
logging_steps: 1
|
80 |
+
xformers_attention:
|
81 |
+
flash_attention: true
|
82 |
+
|
83 |
+
loss_watchdog_threshold: 5.0
|
84 |
+
loss_watchdog_patience: 3
|
85 |
+
|
86 |
+
max_steps: 500
|
87 |
+
warmup_steps: 10
|
88 |
+
evals_per_epoch: 4
|
89 |
+
eval_table_size:
|
90 |
+
eval_max_new_tokens: 1
|
91 |
+
saves_per_epoch: 1
|
92 |
+
debug:
|
93 |
+
deepspeed:
|
94 |
+
weight_decay: 0.001
|
95 |
+
fsdp:
|
96 |
+
fsdp_config:
|
97 |
+
special_tokens:
|
98 |
+
|
99 |
+
|
100 |
+
```
|
101 |
+
|
102 |
+
</details><br>
|
103 |
+
|
104 |
+
# qlora-out
|
105 |
+
|
106 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
107 |
+
It achieves the following results on the evaluation set:
|
108 |
+
- Loss: 0.1465
|
109 |
+
|
110 |
+
## Model description
|
111 |
+
|
112 |
+
More information needed
|
113 |
+
|
114 |
+
## Intended uses & limitations
|
115 |
+
|
116 |
+
More information needed
|
117 |
+
|
118 |
+
## Training and evaluation data
|
119 |
+
|
120 |
+
More information needed
|
121 |
+
|
122 |
+
## Training procedure
|
123 |
+
|
124 |
+
### Training hyperparameters
|
125 |
+
|
126 |
+
The following hyperparameters were used during training:
|
127 |
+
- learning_rate: 0.0002
|
128 |
+
- train_batch_size: 2
|
129 |
+
- eval_batch_size: 2
|
130 |
+
- seed: 42
|
131 |
+
- gradient_accumulation_steps: 4
|
132 |
+
- total_train_batch_size: 8
|
133 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
134 |
+
- lr_scheduler_type: cosine
|
135 |
+
- lr_scheduler_warmup_steps: 10
|
136 |
+
- training_steps: 62
|
137 |
+
|
138 |
+
### Training results
|
139 |
+
|
140 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
141 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
142 |
+
| 6.6367 | 0.08 | 1 | 7.3009 |
|
143 |
+
| 2.3866 | 0.32 | 4 | 0.7138 |
|
144 |
+
| 0.948 | 0.64 | 8 | 1.0446 |
|
145 |
+
| 0.6822 | 0.96 | 12 | 1.3960 |
|
146 |
+
| 0.5222 | 1.28 | 16 | 0.9023 |
|
147 |
+
| 0.534 | 1.6 | 20 | 0.4847 |
|
148 |
+
| 0.4624 | 1.92 | 24 | 0.5740 |
|
149 |
+
| 0.7753 | 2.24 | 28 | 0.3772 |
|
150 |
+
| 0.3324 | 2.56 | 32 | 0.2937 |
|
151 |
+
| 0.1973 | 2.88 | 36 | 0.5675 |
|
152 |
+
| 0.0843 | 3.2 | 40 | 0.2360 |
|
153 |
+
| 0.3836 | 3.52 | 44 | 0.1397 |
|
154 |
+
| 0.0449 | 3.84 | 48 | 0.2801 |
|
155 |
+
| 0.2246 | 4.16 | 52 | 0.1946 |
|
156 |
+
| 0.229 | 4.48 | 56 | 0.1618 |
|
157 |
+
| 0.3073 | 4.8 | 60 | 0.1465 |
|
158 |
+
|
159 |
+
|
160 |
+
### Framework versions
|
161 |
+
|
162 |
+
- PEFT 0.10.1.dev0
|
163 |
+
- Transformers 4.39.0.dev0
|
164 |
+
- Pytorch 2.1.2
|
165 |
+
- Datasets 2.18.0
|
166 |
+
- Tokenizers 0.15.0
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 64,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"up_proj",
|
24 |
+
"k_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"o_proj",
|
27 |
+
"down_proj",
|
28 |
+
"q_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef894f6daf736ab4a35fe0fba96204d34d3a179661233fc32771e92bcb515b0d
|
3 |
+
size 335706186
|
checkpoint-13/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.1.dev0
|
checkpoint-13/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 64,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"up_proj",
|
24 |
+
"k_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"o_proj",
|
27 |
+
"down_proj",
|
28 |
+
"q_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-13/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72069b2abc2e8e408822bca99f6492f6272dff7f199d0afff420f28fdcde57ab
|
3 |
+
size 335604696
|
checkpoint-13/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aff099a7ecc6bc7c04d5f8fd80d2443dd9f492cb12877c91fe4ea29066d9dd08
|
3 |
+
size 168624724
|
checkpoint-13/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74fd0abf3b25d5f521218bb97508206369e6984af4f556dd58b22d5dfbbb6425
|
3 |
+
size 14244
|
checkpoint-13/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d3b6aff690f8457dc46d75813d9f660109e8ec63e2dc8cbf92e4d726c3a8a8c
|
3 |
+
size 1064
|
checkpoint-13/trainer_state.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.04,
|
5 |
+
"eval_steps": 4,
|
6 |
+
"global_step": 13,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.08,
|
13 |
+
"grad_norm": 102.28898620605469,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 6.6367,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.08,
|
20 |
+
"eval_loss": 7.300913333892822,
|
21 |
+
"eval_runtime": 1.3523,
|
22 |
+
"eval_samples_per_second": 8.873,
|
23 |
+
"eval_steps_per_second": 4.437,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.16,
|
28 |
+
"grad_norm": 103.4541015625,
|
29 |
+
"learning_rate": 4e-05,
|
30 |
+
"loss": 7.0616,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.24,
|
35 |
+
"grad_norm": 67.47515869140625,
|
36 |
+
"learning_rate": 6e-05,
|
37 |
+
"loss": 4.686,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.32,
|
42 |
+
"grad_norm": 72.36919403076172,
|
43 |
+
"learning_rate": 8e-05,
|
44 |
+
"loss": 2.3866,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.32,
|
49 |
+
"eval_loss": 0.7137572169303894,
|
50 |
+
"eval_runtime": 1.3532,
|
51 |
+
"eval_samples_per_second": 8.868,
|
52 |
+
"eval_steps_per_second": 4.434,
|
53 |
+
"step": 4
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.4,
|
57 |
+
"grad_norm": 16.83085060119629,
|
58 |
+
"learning_rate": 0.0001,
|
59 |
+
"loss": 0.6844,
|
60 |
+
"step": 5
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.48,
|
64 |
+
"grad_norm": 25.897714614868164,
|
65 |
+
"learning_rate": 0.00012,
|
66 |
+
"loss": 0.914,
|
67 |
+
"step": 6
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.56,
|
71 |
+
"grad_norm": 18.89151382446289,
|
72 |
+
"learning_rate": 0.00014,
|
73 |
+
"loss": 0.63,
|
74 |
+
"step": 7
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.64,
|
78 |
+
"grad_norm": 27.15555763244629,
|
79 |
+
"learning_rate": 0.00016,
|
80 |
+
"loss": 0.948,
|
81 |
+
"step": 8
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.64,
|
85 |
+
"eval_loss": 1.0445994138717651,
|
86 |
+
"eval_runtime": 1.356,
|
87 |
+
"eval_samples_per_second": 8.85,
|
88 |
+
"eval_steps_per_second": 4.425,
|
89 |
+
"step": 8
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.72,
|
93 |
+
"grad_norm": 20.812381744384766,
|
94 |
+
"learning_rate": 0.00018,
|
95 |
+
"loss": 1.0285,
|
96 |
+
"step": 9
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 0.8,
|
100 |
+
"grad_norm": 56.3886604309082,
|
101 |
+
"learning_rate": 0.0002,
|
102 |
+
"loss": 1.3756,
|
103 |
+
"step": 10
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"epoch": 0.88,
|
107 |
+
"grad_norm": 6.24803352355957,
|
108 |
+
"learning_rate": 0.00019981755542233177,
|
109 |
+
"loss": 0.5178,
|
110 |
+
"step": 11
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.96,
|
114 |
+
"grad_norm": 8.379430770874023,
|
115 |
+
"learning_rate": 0.0001992708874098054,
|
116 |
+
"loss": 0.6822,
|
117 |
+
"step": 12
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.96,
|
121 |
+
"eval_loss": 1.3959709405899048,
|
122 |
+
"eval_runtime": 1.3583,
|
123 |
+
"eval_samples_per_second": 8.835,
|
124 |
+
"eval_steps_per_second": 4.417,
|
125 |
+
"step": 12
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 1.04,
|
129 |
+
"grad_norm": 20.744348526000977,
|
130 |
+
"learning_rate": 0.00019836199069471437,
|
131 |
+
"loss": 1.3762,
|
132 |
+
"step": 13
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"logging_steps": 1,
|
136 |
+
"max_steps": 62,
|
137 |
+
"num_input_tokens_seen": 0,
|
138 |
+
"num_train_epochs": 6,
|
139 |
+
"save_steps": 13,
|
140 |
+
"total_flos": 1138234761412608.0,
|
141 |
+
"train_batch_size": 2,
|
142 |
+
"trial_name": null,
|
143 |
+
"trial_params": null
|
144 |
+
}
|
checkpoint-13/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66fede3f83b4ad6ce095e0aa09047d95bd4acc13170780f9e890d9d17d1bdace
|
3 |
+
size 5624
|
checkpoint-26/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.1.dev0
|
checkpoint-26/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 64,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"up_proj",
|
24 |
+
"k_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"o_proj",
|
27 |
+
"down_proj",
|
28 |
+
"q_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-26/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:387499c7736d8b7c5cab21843d9b986ad31e4777afa1c953e254a6b821622ab8
|
3 |
+
size 335604696
|
checkpoint-26/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c26885c89f597923fecf6d91cf382dfac6eeea66972dd286bb6316360fd0bb69
|
3 |
+
size 168624724
|
checkpoint-26/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69726c1b60735ec075cbe9ef238868d0b5845ade6b93bfd60e810fcee5f233a5
|
3 |
+
size 14244
|
checkpoint-26/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c22f4d3e17b1ff1ac5db395ab84ba067bc34a07791275897d3efe0cf1944d439
|
3 |
+
size 1064
|
checkpoint-26/trainer_state.json
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.08,
|
5 |
+
"eval_steps": 4,
|
6 |
+
"global_step": 26,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.08,
|
13 |
+
"grad_norm": 102.28898620605469,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 6.6367,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.08,
|
20 |
+
"eval_loss": 7.300913333892822,
|
21 |
+
"eval_runtime": 1.3523,
|
22 |
+
"eval_samples_per_second": 8.873,
|
23 |
+
"eval_steps_per_second": 4.437,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.16,
|
28 |
+
"grad_norm": 103.4541015625,
|
29 |
+
"learning_rate": 4e-05,
|
30 |
+
"loss": 7.0616,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.24,
|
35 |
+
"grad_norm": 67.47515869140625,
|
36 |
+
"learning_rate": 6e-05,
|
37 |
+
"loss": 4.686,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.32,
|
42 |
+
"grad_norm": 72.36919403076172,
|
43 |
+
"learning_rate": 8e-05,
|
44 |
+
"loss": 2.3866,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.32,
|
49 |
+
"eval_loss": 0.7137572169303894,
|
50 |
+
"eval_runtime": 1.3532,
|
51 |
+
"eval_samples_per_second": 8.868,
|
52 |
+
"eval_steps_per_second": 4.434,
|
53 |
+
"step": 4
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.4,
|
57 |
+
"grad_norm": 16.83085060119629,
|
58 |
+
"learning_rate": 0.0001,
|
59 |
+
"loss": 0.6844,
|
60 |
+
"step": 5
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.48,
|
64 |
+
"grad_norm": 25.897714614868164,
|
65 |
+
"learning_rate": 0.00012,
|
66 |
+
"loss": 0.914,
|
67 |
+
"step": 6
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.56,
|
71 |
+
"grad_norm": 18.89151382446289,
|
72 |
+
"learning_rate": 0.00014,
|
73 |
+
"loss": 0.63,
|
74 |
+
"step": 7
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.64,
|
78 |
+
"grad_norm": 27.15555763244629,
|
79 |
+
"learning_rate": 0.00016,
|
80 |
+
"loss": 0.948,
|
81 |
+
"step": 8
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.64,
|
85 |
+
"eval_loss": 1.0445994138717651,
|
86 |
+
"eval_runtime": 1.356,
|
87 |
+
"eval_samples_per_second": 8.85,
|
88 |
+
"eval_steps_per_second": 4.425,
|
89 |
+
"step": 8
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.72,
|
93 |
+
"grad_norm": 20.812381744384766,
|
94 |
+
"learning_rate": 0.00018,
|
95 |
+
"loss": 1.0285,
|
96 |
+
"step": 9
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 0.8,
|
100 |
+
"grad_norm": 56.3886604309082,
|
101 |
+
"learning_rate": 0.0002,
|
102 |
+
"loss": 1.3756,
|
103 |
+
"step": 10
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"epoch": 0.88,
|
107 |
+
"grad_norm": 6.24803352355957,
|
108 |
+
"learning_rate": 0.00019981755542233177,
|
109 |
+
"loss": 0.5178,
|
110 |
+
"step": 11
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.96,
|
114 |
+
"grad_norm": 8.379430770874023,
|
115 |
+
"learning_rate": 0.0001992708874098054,
|
116 |
+
"loss": 0.6822,
|
117 |
+
"step": 12
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.96,
|
121 |
+
"eval_loss": 1.3959709405899048,
|
122 |
+
"eval_runtime": 1.3583,
|
123 |
+
"eval_samples_per_second": 8.835,
|
124 |
+
"eval_steps_per_second": 4.417,
|
125 |
+
"step": 12
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 1.04,
|
129 |
+
"grad_norm": 20.744348526000977,
|
130 |
+
"learning_rate": 0.00019836199069471437,
|
131 |
+
"loss": 1.3762,
|
132 |
+
"step": 13
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"epoch": 1.12,
|
136 |
+
"grad_norm": 4.800480842590332,
|
137 |
+
"learning_rate": 0.0001970941817426052,
|
138 |
+
"loss": 0.5248,
|
139 |
+
"step": 14
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 1.2,
|
143 |
+
"grad_norm": 11.284302711486816,
|
144 |
+
"learning_rate": 0.00019547208665085457,
|
145 |
+
"loss": 0.8094,
|
146 |
+
"step": 15
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 1.28,
|
150 |
+
"grad_norm": 5.787976264953613,
|
151 |
+
"learning_rate": 0.0001935016242685415,
|
152 |
+
"loss": 0.5222,
|
153 |
+
"step": 16
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 1.28,
|
157 |
+
"eval_loss": 0.9023411870002747,
|
158 |
+
"eval_runtime": 1.3623,
|
159 |
+
"eval_samples_per_second": 8.808,
|
160 |
+
"eval_steps_per_second": 4.404,
|
161 |
+
"step": 16
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 1.36,
|
165 |
+
"grad_norm": 21.48629379272461,
|
166 |
+
"learning_rate": 0.00019118998459920902,
|
167 |
+
"loss": 0.8027,
|
168 |
+
"step": 17
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 1.44,
|
172 |
+
"grad_norm": 38.0982666015625,
|
173 |
+
"learning_rate": 0.000188545602565321,
|
174 |
+
"loss": 1.7772,
|
175 |
+
"step": 18
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 1.52,
|
179 |
+
"grad_norm": 10.824837684631348,
|
180 |
+
"learning_rate": 0.00018557812723014476,
|
181 |
+
"loss": 0.7737,
|
182 |
+
"step": 19
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.6,
|
186 |
+
"grad_norm": 9.1353120803833,
|
187 |
+
"learning_rate": 0.00018229838658936564,
|
188 |
+
"loss": 0.534,
|
189 |
+
"step": 20
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.6,
|
193 |
+
"eval_loss": 0.4847445785999298,
|
194 |
+
"eval_runtime": 1.3637,
|
195 |
+
"eval_samples_per_second": 8.799,
|
196 |
+
"eval_steps_per_second": 4.4,
|
197 |
+
"step": 20
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 1.68,
|
201 |
+
"grad_norm": 3.8411033153533936,
|
202 |
+
"learning_rate": 0.00017871834806090501,
|
203 |
+
"loss": 0.3201,
|
204 |
+
"step": 21
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.76,
|
208 |
+
"grad_norm": 23.888507843017578,
|
209 |
+
"learning_rate": 0.00017485107481711012,
|
210 |
+
"loss": 2.2541,
|
211 |
+
"step": 22
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.84,
|
215 |
+
"grad_norm": 8.5956392288208,
|
216 |
+
"learning_rate": 0.00017071067811865476,
|
217 |
+
"loss": 0.8177,
|
218 |
+
"step": 23
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.92,
|
222 |
+
"grad_norm": 3.825141191482544,
|
223 |
+
"learning_rate": 0.00016631226582407952,
|
224 |
+
"loss": 0.4624,
|
225 |
+
"step": 24
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.92,
|
229 |
+
"eval_loss": 0.5740255117416382,
|
230 |
+
"eval_runtime": 1.3655,
|
231 |
+
"eval_samples_per_second": 8.788,
|
232 |
+
"eval_steps_per_second": 4.394,
|
233 |
+
"step": 24
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 2.0,
|
237 |
+
"grad_norm": 3.558993101119995,
|
238 |
+
"learning_rate": 0.00016167188726285434,
|
239 |
+
"loss": 0.3714,
|
240 |
+
"step": 25
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 2.08,
|
244 |
+
"grad_norm": 11.759211540222168,
|
245 |
+
"learning_rate": 0.00015680647467311557,
|
246 |
+
"loss": 0.6562,
|
247 |
+
"step": 26
|
248 |
+
}
|
249 |
+
],
|
250 |
+
"logging_steps": 1,
|
251 |
+
"max_steps": 62,
|
252 |
+
"num_input_tokens_seen": 0,
|
253 |
+
"num_train_epochs": 6,
|
254 |
+
"save_steps": 13,
|
255 |
+
"total_flos": 2276469522825216.0,
|
256 |
+
"train_batch_size": 2,
|
257 |
+
"trial_name": null,
|
258 |
+
"trial_params": null
|
259 |
+
}
|
checkpoint-26/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66fede3f83b4ad6ce095e0aa09047d95bd4acc13170780f9e890d9d17d1bdace
|
3 |
+
size 5624
|
checkpoint-39/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.1.dev0
|
checkpoint-39/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 64,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"up_proj",
|
24 |
+
"k_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"o_proj",
|
27 |
+
"down_proj",
|
28 |
+
"q_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-39/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12b8939dee1c9d7c76fb429805ca8dd1be67417b78ad3ae2622ce37f2a7294d6
|
3 |
+
size 335604696
|
checkpoint-39/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62c9a9efa8eced911795343502191b7b9044f8b5aa46a6f27343859276faacbc
|
3 |
+
size 168624724
|
checkpoint-39/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b83b87057617d19867b72bb4f1d7769198abfb127e1bef7a626c1e07b9dee3f2
|
3 |
+
size 14244
|
checkpoint-39/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a8d987b7fe563f350e72415c21199e03eb1c8b092374967d449229a0b0fa9b1
|
3 |
+
size 1064
|
checkpoint-39/trainer_state.json
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.12,
|
5 |
+
"eval_steps": 4,
|
6 |
+
"global_step": 39,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.08,
|
13 |
+
"grad_norm": 102.28898620605469,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 6.6367,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.08,
|
20 |
+
"eval_loss": 7.300913333892822,
|
21 |
+
"eval_runtime": 1.3523,
|
22 |
+
"eval_samples_per_second": 8.873,
|
23 |
+
"eval_steps_per_second": 4.437,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.16,
|
28 |
+
"grad_norm": 103.4541015625,
|
29 |
+
"learning_rate": 4e-05,
|
30 |
+
"loss": 7.0616,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.24,
|
35 |
+
"grad_norm": 67.47515869140625,
|
36 |
+
"learning_rate": 6e-05,
|
37 |
+
"loss": 4.686,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.32,
|
42 |
+
"grad_norm": 72.36919403076172,
|
43 |
+
"learning_rate": 8e-05,
|
44 |
+
"loss": 2.3866,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.32,
|
49 |
+
"eval_loss": 0.7137572169303894,
|
50 |
+
"eval_runtime": 1.3532,
|
51 |
+
"eval_samples_per_second": 8.868,
|
52 |
+
"eval_steps_per_second": 4.434,
|
53 |
+
"step": 4
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.4,
|
57 |
+
"grad_norm": 16.83085060119629,
|
58 |
+
"learning_rate": 0.0001,
|
59 |
+
"loss": 0.6844,
|
60 |
+
"step": 5
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.48,
|
64 |
+
"grad_norm": 25.897714614868164,
|
65 |
+
"learning_rate": 0.00012,
|
66 |
+
"loss": 0.914,
|
67 |
+
"step": 6
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.56,
|
71 |
+
"grad_norm": 18.89151382446289,
|
72 |
+
"learning_rate": 0.00014,
|
73 |
+
"loss": 0.63,
|
74 |
+
"step": 7
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.64,
|
78 |
+
"grad_norm": 27.15555763244629,
|
79 |
+
"learning_rate": 0.00016,
|
80 |
+
"loss": 0.948,
|
81 |
+
"step": 8
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.64,
|
85 |
+
"eval_loss": 1.0445994138717651,
|
86 |
+
"eval_runtime": 1.356,
|
87 |
+
"eval_samples_per_second": 8.85,
|
88 |
+
"eval_steps_per_second": 4.425,
|
89 |
+
"step": 8
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.72,
|
93 |
+
"grad_norm": 20.812381744384766,
|
94 |
+
"learning_rate": 0.00018,
|
95 |
+
"loss": 1.0285,
|
96 |
+
"step": 9
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 0.8,
|
100 |
+
"grad_norm": 56.3886604309082,
|
101 |
+
"learning_rate": 0.0002,
|
102 |
+
"loss": 1.3756,
|
103 |
+
"step": 10
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"epoch": 0.88,
|
107 |
+
"grad_norm": 6.24803352355957,
|
108 |
+
"learning_rate": 0.00019981755542233177,
|
109 |
+
"loss": 0.5178,
|
110 |
+
"step": 11
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.96,
|
114 |
+
"grad_norm": 8.379430770874023,
|
115 |
+
"learning_rate": 0.0001992708874098054,
|
116 |
+
"loss": 0.6822,
|
117 |
+
"step": 12
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.96,
|
121 |
+
"eval_loss": 1.3959709405899048,
|
122 |
+
"eval_runtime": 1.3583,
|
123 |
+
"eval_samples_per_second": 8.835,
|
124 |
+
"eval_steps_per_second": 4.417,
|
125 |
+
"step": 12
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 1.04,
|
129 |
+
"grad_norm": 20.744348526000977,
|
130 |
+
"learning_rate": 0.00019836199069471437,
|
131 |
+
"loss": 1.3762,
|
132 |
+
"step": 13
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"epoch": 1.12,
|
136 |
+
"grad_norm": 4.800480842590332,
|
137 |
+
"learning_rate": 0.0001970941817426052,
|
138 |
+
"loss": 0.5248,
|
139 |
+
"step": 14
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 1.2,
|
143 |
+
"grad_norm": 11.284302711486816,
|
144 |
+
"learning_rate": 0.00019547208665085457,
|
145 |
+
"loss": 0.8094,
|
146 |
+
"step": 15
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 1.28,
|
150 |
+
"grad_norm": 5.787976264953613,
|
151 |
+
"learning_rate": 0.0001935016242685415,
|
152 |
+
"loss": 0.5222,
|
153 |
+
"step": 16
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 1.28,
|
157 |
+
"eval_loss": 0.9023411870002747,
|
158 |
+
"eval_runtime": 1.3623,
|
159 |
+
"eval_samples_per_second": 8.808,
|
160 |
+
"eval_steps_per_second": 4.404,
|
161 |
+
"step": 16
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 1.36,
|
165 |
+
"grad_norm": 21.48629379272461,
|
166 |
+
"learning_rate": 0.00019118998459920902,
|
167 |
+
"loss": 0.8027,
|
168 |
+
"step": 17
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 1.44,
|
172 |
+
"grad_norm": 38.0982666015625,
|
173 |
+
"learning_rate": 0.000188545602565321,
|
174 |
+
"loss": 1.7772,
|
175 |
+
"step": 18
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 1.52,
|
179 |
+
"grad_norm": 10.824837684631348,
|
180 |
+
"learning_rate": 0.00018557812723014476,
|
181 |
+
"loss": 0.7737,
|
182 |
+
"step": 19
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.6,
|
186 |
+
"grad_norm": 9.1353120803833,
|
187 |
+
"learning_rate": 0.00018229838658936564,
|
188 |
+
"loss": 0.534,
|
189 |
+
"step": 20
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.6,
|
193 |
+
"eval_loss": 0.4847445785999298,
|
194 |
+
"eval_runtime": 1.3637,
|
195 |
+
"eval_samples_per_second": 8.799,
|
196 |
+
"eval_steps_per_second": 4.4,
|
197 |
+
"step": 20
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 1.68,
|
201 |
+
"grad_norm": 3.8411033153533936,
|
202 |
+
"learning_rate": 0.00017871834806090501,
|
203 |
+
"loss": 0.3201,
|
204 |
+
"step": 21
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.76,
|
208 |
+
"grad_norm": 23.888507843017578,
|
209 |
+
"learning_rate": 0.00017485107481711012,
|
210 |
+
"loss": 2.2541,
|
211 |
+
"step": 22
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.84,
|
215 |
+
"grad_norm": 8.5956392288208,
|
216 |
+
"learning_rate": 0.00017071067811865476,
|
217 |
+
"loss": 0.8177,
|
218 |
+
"step": 23
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.92,
|
222 |
+
"grad_norm": 3.825141191482544,
|
223 |
+
"learning_rate": 0.00016631226582407952,
|
224 |
+
"loss": 0.4624,
|
225 |
+
"step": 24
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.92,
|
229 |
+
"eval_loss": 0.5740255117416382,
|
230 |
+
"eval_runtime": 1.3655,
|
231 |
+
"eval_samples_per_second": 8.788,
|
232 |
+
"eval_steps_per_second": 4.394,
|
233 |
+
"step": 24
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 2.0,
|
237 |
+
"grad_norm": 3.558993101119995,
|
238 |
+
"learning_rate": 0.00016167188726285434,
|
239 |
+
"loss": 0.3714,
|
240 |
+
"step": 25
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 2.08,
|
244 |
+
"grad_norm": 11.759211540222168,
|
245 |
+
"learning_rate": 0.00015680647467311557,
|
246 |
+
"loss": 0.6562,
|
247 |
+
"step": 26
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 2.16,
|
251 |
+
"grad_norm": 96.2179183959961,
|
252 |
+
"learning_rate": 0.00015173378141776568,
|
253 |
+
"loss": 1.5141,
|
254 |
+
"step": 27
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 2.24,
|
258 |
+
"grad_norm": 31.022045135498047,
|
259 |
+
"learning_rate": 0.00014647231720437686,
|
260 |
+
"loss": 0.7753,
|
261 |
+
"step": 28
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 2.24,
|
265 |
+
"eval_loss": 0.3771994113922119,
|
266 |
+
"eval_runtime": 1.3676,
|
267 |
+
"eval_samples_per_second": 8.775,
|
268 |
+
"eval_steps_per_second": 4.387,
|
269 |
+
"step": 28
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 2.32,
|
273 |
+
"grad_norm": 3.5004501342773438,
|
274 |
+
"learning_rate": 0.0001410412805452757,
|
275 |
+
"loss": 0.2649,
|
276 |
+
"step": 29
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 2.4,
|
280 |
+
"grad_norm": 5.16464376449585,
|
281 |
+
"learning_rate": 0.00013546048870425356,
|
282 |
+
"loss": 0.171,
|
283 |
+
"step": 30
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 2.48,
|
287 |
+
"grad_norm": 25.634010314941406,
|
288 |
+
"learning_rate": 0.00012975030538552032,
|
289 |
+
"loss": 0.9172,
|
290 |
+
"step": 31
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 2.56,
|
294 |
+
"grad_norm": 7.102908134460449,
|
295 |
+
"learning_rate": 0.0001239315664287558,
|
296 |
+
"loss": 0.3324,
|
297 |
+
"step": 32
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 2.56,
|
301 |
+
"eval_loss": 0.29374203085899353,
|
302 |
+
"eval_runtime": 1.3678,
|
303 |
+
"eval_samples_per_second": 8.773,
|
304 |
+
"eval_steps_per_second": 4.387,
|
305 |
+
"step": 32
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 2.64,
|
309 |
+
"grad_norm": 6.236325263977051,
|
310 |
+
"learning_rate": 0.0001180255037813906,
|
311 |
+
"loss": 0.4932,
|
312 |
+
"step": 33
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 2.72,
|
316 |
+
"grad_norm": 4.445058345794678,
|
317 |
+
"learning_rate": 0.0001120536680255323,
|
318 |
+
"loss": 0.1284,
|
319 |
+
"step": 34
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 2.8,
|
323 |
+
"grad_norm": 6.94170618057251,
|
324 |
+
"learning_rate": 0.00010603784974222861,
|
325 |
+
"loss": 0.1547,
|
326 |
+
"step": 35
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 2.88,
|
330 |
+
"grad_norm": 5.656033039093018,
|
331 |
+
"learning_rate": 0.0001,
|
332 |
+
"loss": 0.1973,
|
333 |
+
"step": 36
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 2.88,
|
337 |
+
"eval_loss": 0.5674905180931091,
|
338 |
+
"eval_runtime": 1.3681,
|
339 |
+
"eval_samples_per_second": 8.771,
|
340 |
+
"eval_steps_per_second": 4.386,
|
341 |
+
"step": 36
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 2.96,
|
345 |
+
"grad_norm": 18.19667625427246,
|
346 |
+
"learning_rate": 9.396215025777139e-05,
|
347 |
+
"loss": 0.4884,
|
348 |
+
"step": 37
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 3.04,
|
352 |
+
"grad_norm": 17.964893341064453,
|
353 |
+
"learning_rate": 8.79463319744677e-05,
|
354 |
+
"loss": 0.5526,
|
355 |
+
"step": 38
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 3.12,
|
359 |
+
"grad_norm": 5.015590190887451,
|
360 |
+
"learning_rate": 8.197449621860943e-05,
|
361 |
+
"loss": 0.2116,
|
362 |
+
"step": 39
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"logging_steps": 1,
|
366 |
+
"max_steps": 62,
|
367 |
+
"num_input_tokens_seen": 0,
|
368 |
+
"num_train_epochs": 6,
|
369 |
+
"save_steps": 13,
|
370 |
+
"total_flos": 3414704284237824.0,
|
371 |
+
"train_batch_size": 2,
|
372 |
+
"trial_name": null,
|
373 |
+
"trial_params": null
|
374 |
+
}
|
checkpoint-39/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66fede3f83b4ad6ce095e0aa09047d95bd4acc13170780f9e890d9d17d1bdace
|
3 |
+
size 5624
|
checkpoint-52/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.1.dev0
|
checkpoint-52/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 64,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"up_proj",
|
24 |
+
"k_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"o_proj",
|
27 |
+
"down_proj",
|
28 |
+
"q_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-52/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61f543a16c2bbb11166292af99cbab42fa039c72766ce2da396aa279512c9d67
|
3 |
+
size 335604696
|
checkpoint-52/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc05bf731a50997e7af44d91b701be1a9474180b446eef7cccd0a9bb6f49593f
|
3 |
+
size 168624724
|
checkpoint-52/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d215519440d74cb3c2d938d0a6d0dcc602aa66ebc4017b44adae1cc4c34379e9
|
3 |
+
size 14244
|
checkpoint-52/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:210095055e4e9fa9a08e2ee8a6ef338aebf6d1d63c758470bd2537cf069290da
|
3 |
+
size 1064
|
checkpoint-52/trainer_state.json
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.19463467597961426,
|
3 |
+
"best_model_checkpoint": "./qlora-out/checkpoint-52",
|
4 |
+
"epoch": 4.16,
|
5 |
+
"eval_steps": 4,
|
6 |
+
"global_step": 52,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.08,
|
13 |
+
"grad_norm": 102.28898620605469,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 6.6367,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.08,
|
20 |
+
"eval_loss": 7.300913333892822,
|
21 |
+
"eval_runtime": 1.3523,
|
22 |
+
"eval_samples_per_second": 8.873,
|
23 |
+
"eval_steps_per_second": 4.437,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.16,
|
28 |
+
"grad_norm": 103.4541015625,
|
29 |
+
"learning_rate": 4e-05,
|
30 |
+
"loss": 7.0616,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.24,
|
35 |
+
"grad_norm": 67.47515869140625,
|
36 |
+
"learning_rate": 6e-05,
|
37 |
+
"loss": 4.686,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.32,
|
42 |
+
"grad_norm": 72.36919403076172,
|
43 |
+
"learning_rate": 8e-05,
|
44 |
+
"loss": 2.3866,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.32,
|
49 |
+
"eval_loss": 0.7137572169303894,
|
50 |
+
"eval_runtime": 1.3532,
|
51 |
+
"eval_samples_per_second": 8.868,
|
52 |
+
"eval_steps_per_second": 4.434,
|
53 |
+
"step": 4
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.4,
|
57 |
+
"grad_norm": 16.83085060119629,
|
58 |
+
"learning_rate": 0.0001,
|
59 |
+
"loss": 0.6844,
|
60 |
+
"step": 5
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.48,
|
64 |
+
"grad_norm": 25.897714614868164,
|
65 |
+
"learning_rate": 0.00012,
|
66 |
+
"loss": 0.914,
|
67 |
+
"step": 6
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.56,
|
71 |
+
"grad_norm": 18.89151382446289,
|
72 |
+
"learning_rate": 0.00014,
|
73 |
+
"loss": 0.63,
|
74 |
+
"step": 7
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.64,
|
78 |
+
"grad_norm": 27.15555763244629,
|
79 |
+
"learning_rate": 0.00016,
|
80 |
+
"loss": 0.948,
|
81 |
+
"step": 8
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.64,
|
85 |
+
"eval_loss": 1.0445994138717651,
|
86 |
+
"eval_runtime": 1.356,
|
87 |
+
"eval_samples_per_second": 8.85,
|
88 |
+
"eval_steps_per_second": 4.425,
|
89 |
+
"step": 8
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.72,
|
93 |
+
"grad_norm": 20.812381744384766,
|
94 |
+
"learning_rate": 0.00018,
|
95 |
+
"loss": 1.0285,
|
96 |
+
"step": 9
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 0.8,
|
100 |
+
"grad_norm": 56.3886604309082,
|
101 |
+
"learning_rate": 0.0002,
|
102 |
+
"loss": 1.3756,
|
103 |
+
"step": 10
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"epoch": 0.88,
|
107 |
+
"grad_norm": 6.24803352355957,
|
108 |
+
"learning_rate": 0.00019981755542233177,
|
109 |
+
"loss": 0.5178,
|
110 |
+
"step": 11
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.96,
|
114 |
+
"grad_norm": 8.379430770874023,
|
115 |
+
"learning_rate": 0.0001992708874098054,
|
116 |
+
"loss": 0.6822,
|
117 |
+
"step": 12
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.96,
|
121 |
+
"eval_loss": 1.3959709405899048,
|
122 |
+
"eval_runtime": 1.3583,
|
123 |
+
"eval_samples_per_second": 8.835,
|
124 |
+
"eval_steps_per_second": 4.417,
|
125 |
+
"step": 12
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 1.04,
|
129 |
+
"grad_norm": 20.744348526000977,
|
130 |
+
"learning_rate": 0.00019836199069471437,
|
131 |
+
"loss": 1.3762,
|
132 |
+
"step": 13
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"epoch": 1.12,
|
136 |
+
"grad_norm": 4.800480842590332,
|
137 |
+
"learning_rate": 0.0001970941817426052,
|
138 |
+
"loss": 0.5248,
|
139 |
+
"step": 14
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 1.2,
|
143 |
+
"grad_norm": 11.284302711486816,
|
144 |
+
"learning_rate": 0.00019547208665085457,
|
145 |
+
"loss": 0.8094,
|
146 |
+
"step": 15
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 1.28,
|
150 |
+
"grad_norm": 5.787976264953613,
|
151 |
+
"learning_rate": 0.0001935016242685415,
|
152 |
+
"loss": 0.5222,
|
153 |
+
"step": 16
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 1.28,
|
157 |
+
"eval_loss": 0.9023411870002747,
|
158 |
+
"eval_runtime": 1.3623,
|
159 |
+
"eval_samples_per_second": 8.808,
|
160 |
+
"eval_steps_per_second": 4.404,
|
161 |
+
"step": 16
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 1.36,
|
165 |
+
"grad_norm": 21.48629379272461,
|
166 |
+
"learning_rate": 0.00019118998459920902,
|
167 |
+
"loss": 0.8027,
|
168 |
+
"step": 17
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 1.44,
|
172 |
+
"grad_norm": 38.0982666015625,
|
173 |
+
"learning_rate": 0.000188545602565321,
|
174 |
+
"loss": 1.7772,
|
175 |
+
"step": 18
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 1.52,
|
179 |
+
"grad_norm": 10.824837684631348,
|
180 |
+
"learning_rate": 0.00018557812723014476,
|
181 |
+
"loss": 0.7737,
|
182 |
+
"step": 19
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.6,
|
186 |
+
"grad_norm": 9.1353120803833,
|
187 |
+
"learning_rate": 0.00018229838658936564,
|
188 |
+
"loss": 0.534,
|
189 |
+
"step": 20
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.6,
|
193 |
+
"eval_loss": 0.4847445785999298,
|
194 |
+
"eval_runtime": 1.3637,
|
195 |
+
"eval_samples_per_second": 8.799,
|
196 |
+
"eval_steps_per_second": 4.4,
|
197 |
+
"step": 20
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 1.68,
|
201 |
+
"grad_norm": 3.8411033153533936,
|
202 |
+
"learning_rate": 0.00017871834806090501,
|
203 |
+
"loss": 0.3201,
|
204 |
+
"step": 21
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.76,
|
208 |
+
"grad_norm": 23.888507843017578,
|
209 |
+
"learning_rate": 0.00017485107481711012,
|
210 |
+
"loss": 2.2541,
|
211 |
+
"step": 22
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.84,
|
215 |
+
"grad_norm": 8.5956392288208,
|
216 |
+
"learning_rate": 0.00017071067811865476,
|
217 |
+
"loss": 0.8177,
|
218 |
+
"step": 23
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.92,
|
222 |
+
"grad_norm": 3.825141191482544,
|
223 |
+
"learning_rate": 0.00016631226582407952,
|
224 |
+
"loss": 0.4624,
|
225 |
+
"step": 24
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.92,
|
229 |
+
"eval_loss": 0.5740255117416382,
|
230 |
+
"eval_runtime": 1.3655,
|
231 |
+
"eval_samples_per_second": 8.788,
|
232 |
+
"eval_steps_per_second": 4.394,
|
233 |
+
"step": 24
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 2.0,
|
237 |
+
"grad_norm": 3.558993101119995,
|
238 |
+
"learning_rate": 0.00016167188726285434,
|
239 |
+
"loss": 0.3714,
|
240 |
+
"step": 25
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 2.08,
|
244 |
+
"grad_norm": 11.759211540222168,
|
245 |
+
"learning_rate": 0.00015680647467311557,
|
246 |
+
"loss": 0.6562,
|
247 |
+
"step": 26
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 2.16,
|
251 |
+
"grad_norm": 96.2179183959961,
|
252 |
+
"learning_rate": 0.00015173378141776568,
|
253 |
+
"loss": 1.5141,
|
254 |
+
"step": 27
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 2.24,
|
258 |
+
"grad_norm": 31.022045135498047,
|
259 |
+
"learning_rate": 0.00014647231720437686,
|
260 |
+
"loss": 0.7753,
|
261 |
+
"step": 28
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 2.24,
|
265 |
+
"eval_loss": 0.3771994113922119,
|
266 |
+
"eval_runtime": 1.3676,
|
267 |
+
"eval_samples_per_second": 8.775,
|
268 |
+
"eval_steps_per_second": 4.387,
|
269 |
+
"step": 28
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 2.32,
|
273 |
+
"grad_norm": 3.5004501342773438,
|
274 |
+
"learning_rate": 0.0001410412805452757,
|
275 |
+
"loss": 0.2649,
|
276 |
+
"step": 29
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 2.4,
|
280 |
+
"grad_norm": 5.16464376449585,
|
281 |
+
"learning_rate": 0.00013546048870425356,
|
282 |
+
"loss": 0.171,
|
283 |
+
"step": 30
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 2.48,
|
287 |
+
"grad_norm": 25.634010314941406,
|
288 |
+
"learning_rate": 0.00012975030538552032,
|
289 |
+
"loss": 0.9172,
|
290 |
+
"step": 31
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 2.56,
|
294 |
+
"grad_norm": 7.102908134460449,
|
295 |
+
"learning_rate": 0.0001239315664287558,
|
296 |
+
"loss": 0.3324,
|
297 |
+
"step": 32
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 2.56,
|
301 |
+
"eval_loss": 0.29374203085899353,
|
302 |
+
"eval_runtime": 1.3678,
|
303 |
+
"eval_samples_per_second": 8.773,
|
304 |
+
"eval_steps_per_second": 4.387,
|
305 |
+
"step": 32
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 2.64,
|
309 |
+
"grad_norm": 6.236325263977051,
|
310 |
+
"learning_rate": 0.0001180255037813906,
|
311 |
+
"loss": 0.4932,
|
312 |
+
"step": 33
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 2.72,
|
316 |
+
"grad_norm": 4.445058345794678,
|
317 |
+
"learning_rate": 0.0001120536680255323,
|
318 |
+
"loss": 0.1284,
|
319 |
+
"step": 34
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 2.8,
|
323 |
+
"grad_norm": 6.94170618057251,
|
324 |
+
"learning_rate": 0.00010603784974222861,
|
325 |
+
"loss": 0.1547,
|
326 |
+
"step": 35
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 2.88,
|
330 |
+
"grad_norm": 5.656033039093018,
|
331 |
+
"learning_rate": 0.0001,
|
332 |
+
"loss": 0.1973,
|
333 |
+
"step": 36
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 2.88,
|
337 |
+
"eval_loss": 0.5674905180931091,
|
338 |
+
"eval_runtime": 1.3681,
|
339 |
+
"eval_samples_per_second": 8.771,
|
340 |
+
"eval_steps_per_second": 4.386,
|
341 |
+
"step": 36
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 2.96,
|
345 |
+
"grad_norm": 18.19667625427246,
|
346 |
+
"learning_rate": 9.396215025777139e-05,
|
347 |
+
"loss": 0.4884,
|
348 |
+
"step": 37
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 3.04,
|
352 |
+
"grad_norm": 17.964893341064453,
|
353 |
+
"learning_rate": 8.79463319744677e-05,
|
354 |
+
"loss": 0.5526,
|
355 |
+
"step": 38
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 3.12,
|
359 |
+
"grad_norm": 5.015590190887451,
|
360 |
+
"learning_rate": 8.197449621860943e-05,
|
361 |
+
"loss": 0.2116,
|
362 |
+
"step": 39
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 3.2,
|
366 |
+
"grad_norm": 5.6883225440979,
|
367 |
+
"learning_rate": 7.606843357124426e-05,
|
368 |
+
"loss": 0.0843,
|
369 |
+
"step": 40
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.2,
|
373 |
+
"eval_loss": 0.2360386848449707,
|
374 |
+
"eval_runtime": 1.3667,
|
375 |
+
"eval_samples_per_second": 8.78,
|
376 |
+
"eval_steps_per_second": 4.39,
|
377 |
+
"step": 40
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 3.28,
|
381 |
+
"grad_norm": 6.636446475982666,
|
382 |
+
"learning_rate": 7.024969461447972e-05,
|
383 |
+
"loss": 0.1158,
|
384 |
+
"step": 41
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.36,
|
388 |
+
"grad_norm": 4.405576229095459,
|
389 |
+
"learning_rate": 6.453951129574644e-05,
|
390 |
+
"loss": 0.2755,
|
391 |
+
"step": 42
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.44,
|
395 |
+
"grad_norm": 1.6179524660110474,
|
396 |
+
"learning_rate": 5.8958719454724346e-05,
|
397 |
+
"loss": 0.0186,
|
398 |
+
"step": 43
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 3.52,
|
402 |
+
"grad_norm": 8.783114433288574,
|
403 |
+
"learning_rate": 5.3527682795623146e-05,
|
404 |
+
"loss": 0.3836,
|
405 |
+
"step": 44
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 3.52,
|
409 |
+
"eval_loss": 0.13969357311725616,
|
410 |
+
"eval_runtime": 1.3687,
|
411 |
+
"eval_samples_per_second": 8.767,
|
412 |
+
"eval_steps_per_second": 4.384,
|
413 |
+
"step": 44
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 3.6,
|
417 |
+
"grad_norm": 0.8835445046424866,
|
418 |
+
"learning_rate": 4.826621858223431e-05,
|
419 |
+
"loss": 0.0141,
|
420 |
+
"step": 45
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 3.68,
|
424 |
+
"grad_norm": 12.678099632263184,
|
425 |
+
"learning_rate": 4.3193525326884435e-05,
|
426 |
+
"loss": 0.6196,
|
427 |
+
"step": 46
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 3.76,
|
431 |
+
"grad_norm": 5.320870876312256,
|
432 |
+
"learning_rate": 3.832811273714569e-05,
|
433 |
+
"loss": 0.0948,
|
434 |
+
"step": 47
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 3.84,
|
438 |
+
"grad_norm": 2.7501108646392822,
|
439 |
+
"learning_rate": 3.36877341759205e-05,
|
440 |
+
"loss": 0.0449,
|
441 |
+
"step": 48
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 3.84,
|
445 |
+
"eval_loss": 0.2801015079021454,
|
446 |
+
"eval_runtime": 1.3706,
|
447 |
+
"eval_samples_per_second": 8.755,
|
448 |
+
"eval_steps_per_second": 4.378,
|
449 |
+
"step": 48
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 3.92,
|
453 |
+
"grad_norm": 4.41072940826416,
|
454 |
+
"learning_rate": 2.9289321881345254e-05,
|
455 |
+
"loss": 0.3026,
|
456 |
+
"step": 49
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 4.0,
|
460 |
+
"grad_norm": 1.2105910778045654,
|
461 |
+
"learning_rate": 2.514892518288988e-05,
|
462 |
+
"loss": 0.0152,
|
463 |
+
"step": 50
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 4.08,
|
467 |
+
"grad_norm": 4.502895355224609,
|
468 |
+
"learning_rate": 2.1281651939094992e-05,
|
469 |
+
"loss": 0.0629,
|
470 |
+
"step": 51
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 4.16,
|
474 |
+
"grad_norm": 6.058006286621094,
|
475 |
+
"learning_rate": 1.7701613410634365e-05,
|
476 |
+
"loss": 0.2246,
|
477 |
+
"step": 52
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 4.16,
|
481 |
+
"eval_loss": 0.19463467597961426,
|
482 |
+
"eval_runtime": 1.3725,
|
483 |
+
"eval_samples_per_second": 8.743,
|
484 |
+
"eval_steps_per_second": 4.372,
|
485 |
+
"step": 52
|
486 |
+
}
|
487 |
+
],
|
488 |
+
"logging_steps": 1,
|
489 |
+
"max_steps": 62,
|
490 |
+
"num_input_tokens_seen": 0,
|
491 |
+
"num_train_epochs": 6,
|
492 |
+
"save_steps": 13,
|
493 |
+
"total_flos": 4552939045650432.0,
|
494 |
+
"train_batch_size": 2,
|
495 |
+
"trial_name": null,
|
496 |
+
"trial_params": null
|
497 |
+
}
|
checkpoint-52/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66fede3f83b4ad6ce095e0aa09047d95bd4acc13170780f9e890d9d17d1bdace
|
3 |
+
size 5624
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"quantization_config": {
|
19 |
+
"_load_in_4bit": true,
|
20 |
+
"_load_in_8bit": false,
|
21 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
22 |
+
"bnb_4bit_quant_type": "nf4",
|
23 |
+
"bnb_4bit_use_double_quant": true,
|
24 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
25 |
+
"llm_int8_has_fp16_weight": false,
|
26 |
+
"llm_int8_skip_modules": null,
|
27 |
+
"llm_int8_threshold": 6.0,
|
28 |
+
"load_in_4bit": true,
|
29 |
+
"load_in_8bit": false,
|
30 |
+
"quant_method": "bitsandbytes"
|
31 |
+
},
|
32 |
+
"rms_norm_eps": 1e-05,
|
33 |
+
"rope_theta": 10000.0,
|
34 |
+
"sliding_window": 4096,
|
35 |
+
"tie_word_embeddings": false,
|
36 |
+
"torch_dtype": "bfloat16",
|
37 |
+
"transformers_version": "4.39.0.dev0",
|
38 |
+
"use_cache": false,
|
39 |
+
"vocab_size": 32000
|
40 |
+
}
|
merged/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.40.0.dev0",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
merged/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.40.0.dev0"
|
7 |
+
}
|
merged/pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbefe924d88ca0cd30bc695b27d524c7a1e1e102eec3c44809d78da182784d6e
|
3 |
+
size 4943185632
|
merged/pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:244c470b7b7bf63e652eeabed256b9e48b9b627ac0ea8423bf217435390a8e32
|
3 |
+
size 4999844744
|
merged/pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6497299148ff6b197c49bd7046c4f481c732c2edb190f31af6780102b5fe911f
|
3 |
+
size 4540537414
|
merged/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
296 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
297 |
+
}
|
298 |
+
}
|
merged/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
merged/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
merged/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false,
|
43 |
+
"use_fast": true
|
44 |
+
}
|
runs/Apr09_08-29-36_gpu06.pri.dmog.alces.network/events.out.tfevents.1712647777.gpu06.pri.dmog.alces.network.30736.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b916e565a77dcb7d5bd53aba6f367407f84d56fd38e46a20f33d8b05d82f6ec7
|
3 |
+
size 23212
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false,
|
43 |
+
"use_fast": true
|
44 |
+
}
|