caffsean commited on
Commit
2d3e2c7
·
1 Parent(s): 1ddf96b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-base-finetune-thai-to-romanized
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-base-finetune-thai-to-romanized
16
+
17
+ This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 5.5823
20
+ - Rouge1: 0.0533
21
+ - Rouge2: 0.0
22
+ - Rougel: 0.0543
23
+ - Rougelsum: 0.0541
24
+ - Gen Len: 11.3346
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 8
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 10
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
55
+ | 6.2299 | 1.0 | 1500 | 6.0909 | 0.0 | 0.0 | 0.0 | 0.0 | 12.4211 |
56
+ | 6.0799 | 2.0 | 3000 | 5.9716 | 0.0058 | 0.0 | 0.006 | 0.0062 | 11.1185 |
57
+ | 5.9595 | 3.0 | 4500 | 5.9016 | 0.0081 | 0.0 | 0.0082 | 0.008 | 12.1465 |
58
+ | 5.8423 | 4.0 | 6000 | 5.7665 | 0.0364 | 0.0017 | 0.0367 | 0.0365 | 11.6982 |
59
+ | 5.7915 | 5.0 | 7500 | 5.7470 | 0.0441 | 0.0013 | 0.0445 | 0.0442 | 10.7897 |
60
+ | 5.7114 | 6.0 | 9000 | 5.6844 | 0.0472 | 0.0013 | 0.0476 | 0.0478 | 10.5441 |
61
+ | 5.6555 | 7.0 | 10500 | 5.6416 | 0.0549 | 0.0013 | 0.0552 | 0.0552 | 11.1098 |
62
+ | 5.6362 | 8.0 | 12000 | 5.6036 | 0.0493 | 0.0013 | 0.0501 | 0.0498 | 12.7922 |
63
+ | 5.5941 | 9.0 | 13500 | 5.5895 | 0.0535 | 0.0 | 0.0544 | 0.0542 | 11.5989 |
64
+ | 5.569 | 10.0 | 15000 | 5.5823 | 0.0533 | 0.0 | 0.0543 | 0.0541 | 11.3346 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.26.1
70
+ - Pytorch 1.13.1+cu116
71
+ - Datasets 2.9.0
72
+ - Tokenizers 0.13.2