--- base_model: Vignesh-M/Indic-whisper tags: - generated_from_trainer metrics: - accuracy model-index: - name: whisper-indic-audio-abuse-feature results: [] --- # whisper-indic-audio-abuse-feature This model is a fine-tuned version of [Vignesh-M/Indic-whisper](https://huggingface.co/Vignesh-M/Indic-whisper) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5056 - Accuracy: 0.8868 - Macro Precision: 0.8642 - Macro Recall: 0.8509 - Macro F1-score: 0.8572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro Precision | Macro Recall | Macro F1-score | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------------:| | 0.4635 | 0.4367 | 50 | 0.4010 | 0.8020 | 0.8176 | 0.8096 | 0.8014 | | 0.3403 | 0.8734 | 100 | 0.3162 | 0.8684 | 0.8685 | 0.8668 | 0.8675 | | 0.2689 | 1.3100 | 150 | 0.3025 | 0.8807 | 0.8838 | 0.8774 | 0.8793 | | 0.2339 | 1.7467 | 200 | 0.3019 | 0.8782 | 0.8776 | 0.8777 | 0.8776 | | 0.1723 | 2.1834 | 250 | 0.3715 | 0.8868 | 0.8870 | 0.8854 | 0.8861 | | 0.1027 | 2.6201 | 300 | 0.3472 | 0.8930 | 0.8937 | 0.8912 | 0.8921 | | 0.123 | 3.0568 | 350 | 0.3690 | 0.8795 | 0.8855 | 0.8751 | 0.8776 | | 0.0497 | 3.4934 | 400 | 0.4423 | 0.8918 | 0.8916 | 0.8907 | 0.8911 | | 0.0534 | 3.9301 | 450 | 0.3937 | 0.9041 | 0.9048 | 0.9024 | 0.9033 | | 0.0235 | 4.3668 | 500 | 0.4753 | 0.8979 | 0.8993 | 0.8958 | 0.8970 | | 0.0196 | 4.8035 | 550 | 0.5204 | 0.8967 | 0.8982 | 0.8944 | 0.8957 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1