File size: 11,097 Bytes
154098c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Pasivo ahorro y retiro job mejor atención y disponibilidad
- text: Detractor ahorro y retiro ahorro y retiro premium La atenció telefónica no
es buena solo habla una maquina y nunca responde una persona para que le ayude
a uno y poder expresar lo que se necesita.
- text: Detractor gestión patrimonial alto perfil Difícil hacer una gestión por la
página. No he podido retirar un saldo porque no llevo carta y no me dicen qué
hacer si esa empresa ya no existe
- text: Detractor ahorro y retiro dynamic top POrque tengo una inversion y hace tiempo
que no se contacta mi asesor conmigo, le escribí un correo hace unos días y no
me contestó, cambie de celular y no he podido actiualizarlo, estoy buscando como
sacar mi dinero de alla, por la mala experiencia.
- text: Detractor ahorro y retiro pensionado Empecé el proceso en****, y terminé consiguiéndolo
en el****, me dejé en el camino más de 250€ en llamadas desde España a Colombia,
y cada mes me toca pagar para traer el dinero de mi pensión hasta España porque
no hay convenios con los bancos, pierdes en el año más o menos el 80% de una mesada.
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8823529411764706
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construcción de mi pensión personas | <ul><li>'Promotor ahorro y retiro job Excelente servicio'</li><li>'Promotor ahorro y retiro pensionado Asesoría sobre las modalidades de pensión'</li><li>'Pasivo ahorro y retiro hni job Mejorar la asesoría personalizada según el nivel de ingresos de la persona'</li></ul> |
| Solución de ahorro e inversión personas | <ul><li>'Detractor ahorro y retiro job No estoy muy relacionada con el tema'</li><li>'Detractor gestión patrimonial alto perfil Mal servicio por desconocimiento, decisiones unilaterales de Proteccion que afectan a los usuarios, falta de trasparencia en negociones de bonos, falta de soportes aritmeticos y financieros en sus datos a clientes, etc, ect.'</li><li>'Pasivo ahorro y retiro job Asesor pendiente del ahorro sea mucho o poco para tener más rendimientos.'</li></ul> |
| Cesantías Personas | <ul><li>'Detractor gestión patrimonial alto perfil No me volvieron a enviar información de mi estado de cuenta de las cesantías'</li></ul> |
| Construcción de mi pensión empresas | <ul><li>'Detractor ahorro y retiro ahorro y retiro basic No contamos con acompañamiento.'</li><li>'Promotor grandes empleadores grandes empleadores el reconocimiento y trayectoria'</li><li>'Pasivo ahorro y retiro ahorro y retiro basic Mejor asesoramiento'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8824 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("camaosos/journey")
# Run inference
preds = model("Pasivo ahorro y retiro job mejor atención y disponibilidad")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 5 | 18.7576 | 169 |
| Label | Training Sample Count |
|:----------------------------------------|:----------------------|
| Cesantías Personas | 1 |
| Construcción de mi pensión empresas | 8 |
| Construcción de mi pensión personas | 31 |
| Solución de ahorro e inversión personas | 26 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-------:|:-------------:|:---------------:|
| 0.0060 | 1 | 0.1959 | - |
| 0.3012 | 50 | 0.196 | - |
| 0.6024 | 100 | 0.0082 | - |
| 0.9036 | 150 | 0.0016 | - |
| 1.0 | 166 | - | 0.1009 |
| 1.2048 | 200 | 0.0012 | - |
| 1.5060 | 250 | 0.0012 | - |
| 1.8072 | 300 | 0.0004 | - |
| **2.0** | **332** | **-** | **0.095** |
| 2.1084 | 350 | 0.0005 | - |
| 2.4096 | 400 | 0.0004 | - |
| 2.7108 | 450 | 0.0005 | - |
| 3.0 | 498 | - | 0.1009 |
| 3.0120 | 500 | 0.0005 | - |
| 3.3133 | 550 | 0.0003 | - |
| 3.6145 | 600 | 0.0003 | - |
| 3.9157 | 650 | 0.0011 | - |
| 4.0 | 664 | - | 0.1002 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.10
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.2.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |