EMAGE / utils /metric.py
camenduru's picture
thanks to H-Liu1997 ❤
bb82d2f verified
import librosa
import glob
import os
import numpy as np
import matplotlib.pyplot as plt
import librosa.display
from matplotlib.pyplot import figure
import math
from scipy.signal import argrelextrema
class L1div(object):
def __init__(self):
self.counter = 0
self.sum = 0
def run(self, results):
self.counter += results.shape[0]
mean = np.mean(results, 0)
for i in range(results.shape[0]):
results[i, :] = abs(results[i, :] - mean)
sum_l1 = np.sum(results)
self.sum += sum_l1
def avg(self):
return self.sum/self.counter
def reset(self):
self.counter = 0
self.sum = 0
class SRGR(object):
def __init__(self, threshold=0.1, joints=47):
self.threshold = threshold
self.pose_dimes = joints
self.counter = 0
self.sum = 0
def run(self, results, targets, semantic):
results = results.reshape(-1, self.pose_dimes, 3)
targets = targets.reshape(-1, self.pose_dimes, 3)
semantic = semantic.reshape(-1)
diff = np.sum(abs(results-targets),2)
success = np.where(diff<self.threshold, 1.0, 0.0)
for i in range(success.shape[0]):
# srgr == 0.165 when all success, scale range to [0, 1]
success[i, :] *= semantic[i] * (1/0.165)
rate = np.sum(success)/(success.shape[0]*success.shape[1])
self.counter += success.shape[0]
self.sum += (rate*success.shape[0])
return rate
def avg(self):
return self.sum/self.counter
class alignment(object):
def __init__(self, sigma, order, mmae=None, upper_body=[3,6,9,12,13,14,15,16,17,18,19,20,21]):
self.sigma = sigma
self.order = order
self.upper_body= upper_body
# self.times = self.oenv = self.S = self.rms = None
self.pose_data = []
self.mmae = mmae
self.threshold = 0.3
def load_audio(self, wave, t_start=None, t_end=None, without_file=False, sr_audio=16000):
hop_length = 512
if without_file:
y = wave
sr = sr_audio
else: y, sr = librosa.load(wave)
if t_start is None:
short_y = y
else:
short_y = y[t_start:t_end]
# print(short_y.shape)
onset_t = librosa.onset.onset_detect(y=short_y, sr=sr_audio, hop_length=hop_length, units='time')
return onset_t
def load_pose(self, pose, t_start, t_end, pose_fps, without_file=False):
data_each_file = []
if without_file:
for line_data_np in pose: #,args.pre_frames, args.pose_length
data_each_file.append(line_data_np)
#data_each_file.append(np.concatenate([line_data_np[9:18], line_data_np[75:84], ],0))
else:
with open(pose, "r") as f:
for i, line_data in enumerate(f.readlines()):
if i < 432: continue
line_data_np = np.fromstring(line_data, sep=" ",)
if pose_fps == 15:
if i % 2 == 0:
continue
data_each_file.append(np.concatenate([line_data_np[30:39], line_data_np[112:121], ],0))
data_each_file = np.array(data_each_file)
#print(data_each_file.shape)
joints = data_each_file.transpose(1, 0)
dt = 1/pose_fps
# first steps is forward diff (t+1 - t) / dt
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
# middle steps are second order (t+1 - t-1) / 2dt
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
# last step is backward diff (t - t-1) / dt
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
#print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
vel = np.concatenate([init_vel, middle_vel, final_vel], 1).transpose(1, 0).reshape(data_each_file.shape[0], -1, 3)
#print(vel.shape)
#vel = data_each_file.reshape(data_each_file.shape[0], -1, 3)[1:] - data_each_file.reshape(data_each_file.shape[0], -1, 3)[:-1]
vel = np.linalg.norm(vel, axis=2) / self.mmae
beat_vel_all = []
for i in range(vel.shape[1]):
vel_mask = np.where(vel[:, i]>self.threshold)
#print(vel.shape)
#t_end = 80
#vel[::2, :] -= 0.000001
#print(vel[t_start:t_end, i], vel[t_start:t_end, i].shape)
beat_vel = argrelextrema(vel[t_start:t_end, i], np.less, order=self.order) # n*47
#print(beat_vel, t_start, t_end)
beat_vel_list = []
for j in beat_vel[0]:
if j in vel_mask[0]:
beat_vel_list.append(j)
beat_vel = np.array(beat_vel_list)
beat_vel_all.append(beat_vel)
#print(beat_vel_all)
return beat_vel_all #beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist
def load_data(self, wave, pose, t_start, t_end, pose_fps):
onset_raw, onset_bt, onset_bt_rms = self.load_audio(wave, t_start, t_end)
beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist = self.load_pose(pose, t_start, t_end, pose_fps)
return onset_raw, onset_bt, onset_bt_rms, beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist
def eval_random_pose(self, wave, pose, t_start, t_end, pose_fps, num_random=60):
onset_raw, onset_bt, onset_bt_rms = self.load_audio(wave, t_start, t_end)
dur = t_end - t_start
for i in range(num_random):
beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist = self.load_pose(pose, i, i+dur, pose_fps)
dis_all_b2a= self.calculate_align(onset_raw, onset_bt, onset_bt_rms, beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist)
print(f"{i}s: ",dis_all_b2a)
@staticmethod
def plot_onsets(audio, sr, onset_times_1, onset_times_2):
import librosa
import librosa.display
import matplotlib.pyplot as plt
# Plot audio waveform
fig, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True)
# Plot audio waveform in both subplots
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[0])
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[1])
# Plot onsets from first method on the first subplot
for onset in onset_times_1:
axarr[0].axvline(onset, color='r', linestyle='--', alpha=0.9, label='Onset Method 1')
axarr[0].legend()
axarr[0].set(title='Onset Method 1', xlabel='', ylabel='Amplitude')
# Plot onsets from second method on the second subplot
for onset in onset_times_2:
axarr[1].axvline(onset, color='b', linestyle='-', alpha=0.7, label='Onset Method 2')
axarr[1].legend()
axarr[1].set(title='Onset Method 2', xlabel='Time (s)', ylabel='Amplitude')
# Add legend (eliminate duplicate labels)
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys())
# Show plot
plt.title("Audio waveform with Onsets")
plt.savefig("./onset.png", dpi=500)
def audio_beat_vis(self, onset_raw, onset_bt, onset_bt_rms):
figure(figsize=(24, 6), dpi=80)
fig, ax = plt.subplots(nrows=4, sharex=True)
librosa.display.specshow(librosa.amplitude_to_db(self.S, ref=np.max),
y_axis='log', x_axis='time', ax=ax[0])
ax[0].label_outer()
ax[1].plot(self.times, self.oenv, label='Onset strength')
ax[1].vlines(librosa.frames_to_time(onset_raw), 0, self.oenv.max(), label='Raw onsets', color='r')
ax[1].legend()
ax[1].label_outer()
ax[2].plot(self.times, self.oenv, label='Onset strength')
ax[2].vlines(librosa.frames_to_time(onset_bt), 0, self.oenv.max(), label='Backtracked', color='r')
ax[2].legend()
ax[2].label_outer()
ax[3].plot(self.times, self.rms[0], label='RMS')
ax[3].vlines(librosa.frames_to_time(onset_bt_rms), 0, self.oenv.max(), label='Backtracked (RMS)', color='r')
ax[3].legend()
fig.savefig("./onset.png", dpi=500)
@staticmethod
def motion_frames2time(vel, offset, pose_fps):
time_vel = vel/pose_fps + offset
return time_vel
@staticmethod
def GAHR(a, b, sigma):
dis_all_a2b = 0
dis_all_b2a = 0
for b_each in b:
l2_min = np.inf
for a_each in a:
l2_dis = abs(a_each - b_each)
if l2_dis < l2_min:
l2_min = l2_dis
dis_all_b2a += math.exp(-(l2_min**2)/(2*sigma**2))
dis_all_b2a /= len(b)
return dis_all_b2a
@staticmethod
def fix_directed_GAHR(a, b, sigma):
a = alignment.motion_frames2time(a, 0, 30)
b = alignment.motion_frames2time(b, 0, 30)
t = len(a)/30
a = [0] + a + [t]
b = [0] + b + [t]
dis_a2b = alignment.GAHR(a, b, sigma)
return dis_a2b
def calculate_align(self, onset_bt_rms, beat_vel, pose_fps=30):
audio_bt = onset_bt_rms
avg_dis_all_b2a_list = []
for its, beat_vel_each in enumerate(beat_vel):
if its not in self.upper_body:
continue
#print(beat_vel_each)
#print(audio_bt.shape, beat_vel_each.shape)
pose_bt = self.motion_frames2time(beat_vel_each, 0, pose_fps)
#print(pose_bt)
avg_dis_all_b2a_list.append(self.GAHR(pose_bt, audio_bt, self.sigma))
# avg_dis_all_b2a = max(avg_dis_all_b2a_list)
avg_dis_all_b2a = sum(avg_dis_all_b2a_list)/len(avg_dis_all_b2a_list) #max(avg_dis_all_b2a_list)
#print(avg_dis_all_b2a, sum(avg_dis_all_b2a_list)/47)
return avg_dis_all_b2a