import os from typing import Any, Dict from diffusers import FluxPipeline, FluxTransformer2DModel from torchao.quantization import int8_weight_only, quantize_ from PIL.Image import Image import torch from huggingface_inference_toolkit.logging import logger class EndpointHandler: def __init__(self, **kwargs: Any) -> None: # type: ignore repo_id = "camenduru/FLUX.1-dev-diffusers" dtype = torch.bfloat16 transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype) quantize_(transformer, int8_weight_only(), device="cuda") transformer.to(memory_format=torch.channels_last) transformer = torch.compile(transformer, mode="max-autotune", fullgraph=True) self.pipeline = FluxPipeline.from_pretrained(repo_id, transformer=transformer, torch_dtype=torch.bfloat16).to("cuda") self.pipeline.vae.to(memory_format=torch.channels_last) self.pipeline.vae.decode = torch.compile(self.pipeline.vae.decode, mode="max-autotune", fullgraph=True) def __call__(self, data: Dict[str, Any]) -> Image: logger.info(f"Received incoming request with {data=}") if "inputs" in data and isinstance(data["inputs"], str): prompt = data.pop("inputs") elif "prompt" in data and isinstance(data["prompt"], str): prompt = data.pop("prompt") else: raise ValueError( "Provided input body must contain either the key `inputs` or `prompt` with the" " prompt to use for the image generation, and it needs to be a non-empty string." ) parameters = data.pop("parameters", {}) num_inference_steps = parameters.get("num_inference_steps", 30) width = parameters.get("width", 1024) height = parameters.get("height", 768) guidance_scale = parameters.get("guidance_scale", 3.5) # seed generator (seed cannot be provided as is but via a generator) seed = parameters.get("seed", 0) generator = torch.manual_seed(seed) return self.pipeline( # type: ignore prompt, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, ).images[0]