File size: 5,199 Bytes
8ead80b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dnn_filter_common.h"
#include "libavutil/avstring.h"
#define MAX_SUPPORTED_OUTPUTS_NB 4
static char **separate_output_names(const char *expr, const char *val_sep, int *separated_nb)
{
char *val, **parsed_vals = NULL;
int val_num = 0;
if (!expr || !val_sep || !separated_nb) {
return NULL;
}
parsed_vals = av_calloc(MAX_SUPPORTED_OUTPUTS_NB, sizeof(*parsed_vals));
if (!parsed_vals) {
return NULL;
}
do {
val = av_get_token(&expr, val_sep);
if(val) {
parsed_vals[val_num] = val;
val_num++;
}
if (*expr) {
expr++;
}
} while(*expr);
parsed_vals[val_num] = NULL;
*separated_nb = val_num;
return parsed_vals;
}
int ff_dnn_init(DnnContext *ctx, DNNFunctionType func_type, AVFilterContext *filter_ctx)
{
if (!ctx->model_filename) {
av_log(filter_ctx, AV_LOG_ERROR, "model file for network is not specified\n");
return AVERROR(EINVAL);
}
if (!ctx->model_inputname) {
av_log(filter_ctx, AV_LOG_ERROR, "input name of the model network is not specified\n");
return AVERROR(EINVAL);
}
ctx->model_outputnames = separate_output_names(ctx->model_outputnames_string, "&", &ctx->nb_outputs);
if (!ctx->model_outputnames) {
av_log(filter_ctx, AV_LOG_ERROR, "could not parse model output names\n");
return AVERROR(EINVAL);
}
ctx->dnn_module = ff_get_dnn_module(ctx->backend_type, filter_ctx);
if (!ctx->dnn_module) {
av_log(filter_ctx, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
return AVERROR(ENOMEM);
}
if (!ctx->dnn_module->load_model) {
av_log(filter_ctx, AV_LOG_ERROR, "load_model for network is not specified\n");
return AVERROR(EINVAL);
}
ctx->model = (ctx->dnn_module->load_model)(ctx->model_filename, func_type, ctx->backend_options, filter_ctx);
if (!ctx->model) {
av_log(filter_ctx, AV_LOG_ERROR, "could not load DNN model\n");
return AVERROR(EINVAL);
}
return 0;
}
int ff_dnn_set_frame_proc(DnnContext *ctx, FramePrePostProc pre_proc, FramePrePostProc post_proc)
{
ctx->model->frame_pre_proc = pre_proc;
ctx->model->frame_post_proc = post_proc;
return 0;
}
int ff_dnn_set_detect_post_proc(DnnContext *ctx, DetectPostProc post_proc)
{
ctx->model->detect_post_proc = post_proc;
return 0;
}
int ff_dnn_set_classify_post_proc(DnnContext *ctx, ClassifyPostProc post_proc)
{
ctx->model->classify_post_proc = post_proc;
return 0;
}
int ff_dnn_get_input(DnnContext *ctx, DNNData *input)
{
return ctx->model->get_input(ctx->model->model, input, ctx->model_inputname);
}
int ff_dnn_get_output(DnnContext *ctx, int input_width, int input_height, int *output_width, int *output_height)
{
return ctx->model->get_output(ctx->model->model, ctx->model_inputname, input_width, input_height,
(const char *)ctx->model_outputnames[0], output_width, output_height);
}
int ff_dnn_execute_model(DnnContext *ctx, AVFrame *in_frame, AVFrame *out_frame)
{
DNNExecBaseParams exec_params = {
.input_name = ctx->model_inputname,
.output_names = (const char **)ctx->model_outputnames,
.nb_output = ctx->nb_outputs,
.in_frame = in_frame,
.out_frame = out_frame,
};
return (ctx->dnn_module->execute_model)(ctx->model, &exec_params);
}
int ff_dnn_execute_model_classification(DnnContext *ctx, AVFrame *in_frame, AVFrame *out_frame, const char *target)
{
DNNExecClassificationParams class_params = {
{
.input_name = ctx->model_inputname,
.output_names = (const char **)ctx->model_outputnames,
.nb_output = ctx->nb_outputs,
.in_frame = in_frame,
.out_frame = out_frame,
},
.target = target,
};
return (ctx->dnn_module->execute_model)(ctx->model, &class_params.base);
}
DNNAsyncStatusType ff_dnn_get_result(DnnContext *ctx, AVFrame **in_frame, AVFrame **out_frame)
{
return (ctx->dnn_module->get_result)(ctx->model, in_frame, out_frame);
}
int ff_dnn_flush(DnnContext *ctx)
{
return (ctx->dnn_module->flush)(ctx->model);
}
void ff_dnn_uninit(DnnContext *ctx)
{
if (ctx->dnn_module) {
(ctx->dnn_module->free_model)(&ctx->model);
}
}
|