File size: 71,885 Bytes
8ead80b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 |
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
* Copyright (C) 2009, Willow Garage Inc., all rights reserved.
* Copyright (C) 2013, OpenCV Foundation, all rights reserved.
* Third party copyrights are property of their respective owners.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistribution's of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistribution's in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * The name of the copyright holders may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall the Intel Corporation or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort (including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include <float.h>
#include <libavutil/lfg.h>
#include "libavutil/opt.h"
#include "libavutil/mem.h"
#include "libavutil/fifo.h"
#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixfmt.h"
#include "avfilter.h"
#include "framequeue.h"
#include "filters.h"
#include "transform.h"
#include "internal.h"
#include "opencl.h"
#include "opencl_source.h"
#include "video.h"
/*
This filter matches feature points between frames (dealing with outliers) and then
uses the matches to estimate an affine transform between frames. This transform is
decomposed into various values (translation, scale, rotation) and the values are
summed relative to the start of the video to obtain on absolute camera position
for each frame. This "camera path" is then smoothed via a gaussian filter, resulting
in a new path that is turned back into an affine transform and applied to each
frame to render it.
High-level overview:
All of the work to extract motion data from frames occurs in queue_frame. Motion data
is buffered in a smoothing window, so queue_frame simply computes the absolute camera
positions and places them in ringbuffers.
filter_frame is responsible for looking at the absolute camera positions currently
in the ringbuffers, applying the gaussian filter, and then transforming the frames.
*/
// Number of bits for BRIEF descriptors
#define BREIFN 512
// Size of the patch from which a BRIEF descriptor is extracted
// This is the size used in OpenCV
#define BRIEF_PATCH_SIZE 31
#define BRIEF_PATCH_SIZE_HALF (BRIEF_PATCH_SIZE / 2)
#define MATCHES_CONTIG_SIZE 2000
#define ROUNDED_UP_DIV(a, b) ((a + (b - 1)) / b)
typedef struct PointPair {
// Previous frame
cl_float2 p1;
// Current frame
cl_float2 p2;
} PointPair;
typedef struct MotionVector {
PointPair p;
// Used to mark vectors as potential outliers
cl_int should_consider;
} MotionVector;
// Denotes the indices for the different types of motion in the ringbuffers array
enum RingbufferIndices {
RingbufX,
RingbufY,
RingbufRot,
RingbufScaleX,
RingbufScaleY,
// Should always be last
RingbufCount
};
// Struct that holds data for drawing point match debug data
typedef struct DebugMatches {
MotionVector *matches;
// The points used to calculate the affine transform for a frame
MotionVector model_matches[3];
int num_matches;
// For cases where we couldn't calculate a model
int num_model_matches;
} DebugMatches;
// Groups together the ringbuffers that store absolute distortion / position values
// for each frame
typedef struct AbsoluteFrameMotion {
// Array with the various ringbuffers, indexed via the RingbufferIndices enum
AVFifo *ringbuffers[RingbufCount];
// Offset to get to the current frame being processed
// (not in bytes)
int curr_frame_offset;
// Keeps track of where the start and end of contiguous motion data is (to
// deal with cases where no motion data is found between two frames)
int data_start_offset;
int data_end_offset;
AVFifo *debug_matches;
} AbsoluteFrameMotion;
// Takes care of freeing the arrays within the DebugMatches inside of the
// debug_matches ringbuffer and then freeing the buffer itself.
static void free_debug_matches(AbsoluteFrameMotion *afm) {
DebugMatches dm;
if (!afm->debug_matches) {
return;
}
while (av_fifo_read(afm->debug_matches, &dm, 1) >= 0)
av_freep(&dm.matches);
av_fifo_freep2(&afm->debug_matches);
}
// Stores the translation, scale, rotation, and skew deltas between two frames
typedef struct FrameDelta {
cl_float2 translation;
float rotation;
cl_float2 scale;
cl_float2 skew;
} FrameDelta;
typedef struct SimilarityMatrix {
// The 2x3 similarity matrix
double matrix[6];
} SimilarityMatrix;
typedef struct CropInfo {
// The top left corner of the bounding box for the crop
cl_float2 top_left;
// The bottom right corner of the bounding box for the crop
cl_float2 bottom_right;
} CropInfo;
// Returned from function that determines start and end values for iteration
// around the current frame in a ringbuffer
typedef struct IterIndices {
int start;
int end;
} IterIndices;
typedef struct DeshakeOpenCLContext {
OpenCLFilterContext ocf;
// Whether or not the above `OpenCLFilterContext` has been initialized
int initialized;
// These variables are used in the activate callback
int64_t duration;
int eof;
// State for random number generation
AVLFG alfg;
// FIFO frame queue used to buffer future frames for processing
FFFrameQueue fq;
// Ringbuffers for frame positions
AbsoluteFrameMotion abs_motion;
// The number of frames' motion to consider before and after the frame we are
// smoothing
int smooth_window;
// The number of the frame we are currently processing
int curr_frame;
// Stores a 1d array of normalised gaussian kernel values for convolution
float *gauss_kernel;
// Buffer for error values used in RANSAC code
float *ransac_err;
// Information regarding how to crop the smoothed luminance (or RGB) planes
CropInfo crop_y;
// Information regarding how to crop the smoothed chroma planes
CropInfo crop_uv;
// Whether or not we are processing YUV input (as oppposed to RGB)
int is_yuv;
// The underlying format of the hardware surfaces
int sw_format;
// Buffer to copy `matches` into for the CPU to work with
MotionVector *matches_host;
MotionVector *matches_contig_host;
MotionVector *inliers;
cl_command_queue command_queue;
cl_kernel kernel_grayscale;
cl_kernel kernel_harris_response;
cl_kernel kernel_refine_features;
cl_kernel kernel_brief_descriptors;
cl_kernel kernel_match_descriptors;
cl_kernel kernel_transform;
cl_kernel kernel_crop_upscale;
// Stores a frame converted to grayscale
cl_mem grayscale;
// Stores the harris response for a frame (measure of "cornerness" for each pixel)
cl_mem harris_buf;
// Detected features after non-maximum suppression and sub-pixel refinement
cl_mem refined_features;
// Saved from the previous frame
cl_mem prev_refined_features;
// BRIEF sampling pattern that is randomly initialized
cl_mem brief_pattern;
// Feature point descriptors for the current frame
cl_mem descriptors;
// Feature point descriptors for the previous frame
cl_mem prev_descriptors;
// Vectors between points in current and previous frame
cl_mem matches;
cl_mem matches_contig;
// Holds the matrix to transform luminance (or RGB) with
cl_mem transform_y;
// Holds the matrix to transform chroma with
cl_mem transform_uv;
// Configurable options
int tripod_mode;
int debug_on;
int should_crop;
// Whether or not feature points should be refined at a sub-pixel level
cl_int refine_features;
// If the user sets a value other than the default, 0, this percentage is
// translated into a sigma value ranging from 0.5 to 40.0
float smooth_percent;
// This number is multiplied by the video frame rate to determine the size
// of the smooth window
float smooth_window_multiplier;
// Debug stuff
cl_kernel kernel_draw_debug_info;
cl_mem debug_matches;
cl_mem debug_model_matches;
// These store the total time spent executing the different kernels in nanoseconds
unsigned long long grayscale_time;
unsigned long long harris_response_time;
unsigned long long refine_features_time;
unsigned long long brief_descriptors_time;
unsigned long long match_descriptors_time;
unsigned long long transform_time;
unsigned long long crop_upscale_time;
// Time spent copying matched features from the device to the host
unsigned long long read_buf_time;
} DeshakeOpenCLContext;
// Returns a random uniformly-distributed number in [low, high]
static int rand_in(int low, int high, AVLFG *alfg) {
return (av_lfg_get(alfg) % (high - low)) + low;
}
// Returns the average execution time for an event given the total time and the
// number of frames processed.
static double averaged_event_time_ms(unsigned long long total_time, int num_frames) {
return (double)total_time / (double)num_frames / 1000000.0;
}
// The following code is loosely ported from OpenCV
// Estimates affine transform from 3 point pairs
// model is a 2x3 matrix:
// a b c
// d e f
static void run_estimate_kernel(const MotionVector *point_pairs, double *model)
{
// src points
double x1 = point_pairs[0].p.p1.s[0];
double y1 = point_pairs[0].p.p1.s[1];
double x2 = point_pairs[1].p.p1.s[0];
double y2 = point_pairs[1].p.p1.s[1];
double x3 = point_pairs[2].p.p1.s[0];
double y3 = point_pairs[2].p.p1.s[1];
// dest points
double X1 = point_pairs[0].p.p2.s[0];
double Y1 = point_pairs[0].p.p2.s[1];
double X2 = point_pairs[1].p.p2.s[0];
double Y2 = point_pairs[1].p.p2.s[1];
double X3 = point_pairs[2].p.p2.s[0];
double Y3 = point_pairs[2].p.p2.s[1];
double d = 1.0 / ( x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2) );
model[0] = d * ( X1*(y2-y3) + X2*(y3-y1) + X3*(y1-y2) );
model[1] = d * ( X1*(x3-x2) + X2*(x1-x3) + X3*(x2-x1) );
model[2] = d * ( X1*(x2*y3 - x3*y2) + X2*(x3*y1 - x1*y3) + X3*(x1*y2 - x2*y1) );
model[3] = d * ( Y1*(y2-y3) + Y2*(y3-y1) + Y3*(y1-y2) );
model[4] = d * ( Y1*(x3-x2) + Y2*(x1-x3) + Y3*(x2-x1) );
model[5] = d * ( Y1*(x2*y3 - x3*y2) + Y2*(x3*y1 - x1*y3) + Y3*(x1*y2 - x2*y1) );
}
// Checks that the 3 points in the given array are not collinear
static int points_not_collinear(const cl_float2 **points)
{
int j, k, i = 2;
for (j = 0; j < i; j++) {
double dx1 = points[j]->s[0] - points[i]->s[0];
double dy1 = points[j]->s[1] - points[i]->s[1];
for (k = 0; k < j; k++) {
double dx2 = points[k]->s[0] - points[i]->s[0];
double dy2 = points[k]->s[1] - points[i]->s[1];
// Assuming a 3840 x 2160 video with a point at (0, 0) and one at
// (3839, 2159), this prevents a third point from being within roughly
// 0.5 of a pixel of the line connecting the two on both axes
if (fabs(dx2*dy1 - dy2*dx1) <= 1.0) {
return 0;
}
}
}
return 1;
}
// Checks a subset of 3 point pairs to make sure that the points are not collinear
// and not too close to each other
static int check_subset(const MotionVector *pairs_subset)
{
const cl_float2 *prev_points[] = {
&pairs_subset[0].p.p1,
&pairs_subset[1].p.p1,
&pairs_subset[2].p.p1
};
const cl_float2 *curr_points[] = {
&pairs_subset[0].p.p2,
&pairs_subset[1].p.p2,
&pairs_subset[2].p.p2
};
return points_not_collinear(prev_points) && points_not_collinear(curr_points);
}
// Selects a random subset of 3 points from point_pairs and places them in pairs_subset
static int get_subset(
AVLFG *alfg,
const MotionVector *point_pairs,
const int num_point_pairs,
MotionVector *pairs_subset,
int max_attempts
) {
int idx[3];
int i = 0, j, iters = 0;
for (; iters < max_attempts; iters++) {
for (i = 0; i < 3 && iters < max_attempts;) {
int idx_i = 0;
for (;;) {
idx_i = idx[i] = rand_in(0, num_point_pairs, alfg);
for (j = 0; j < i; j++) {
if (idx_i == idx[j]) {
break;
}
}
if (j == i) {
break;
}
}
pairs_subset[i] = point_pairs[idx[i]];
i++;
}
if (i == 3 && !check_subset(pairs_subset)) {
continue;
}
break;
}
return i == 3 && iters < max_attempts;
}
// Computes the error for each of the given points based on the given model.
static void compute_error(
const MotionVector *point_pairs,
const int num_point_pairs,
const double *model,
float *err
) {
double F0 = model[0], F1 = model[1], F2 = model[2];
double F3 = model[3], F4 = model[4], F5 = model[5];
for (int i = 0; i < num_point_pairs; i++) {
const cl_float2 *f = &point_pairs[i].p.p1;
const cl_float2 *t = &point_pairs[i].p.p2;
double a = F0*f->s[0] + F1*f->s[1] + F2 - t->s[0];
double b = F3*f->s[0] + F4*f->s[1] + F5 - t->s[1];
err[i] = a*a + b*b;
}
}
// Determines which of the given point matches are inliers for the given model
// based on the specified threshold.
//
// err must be an array of num_point_pairs length
static int find_inliers(
MotionVector *point_pairs,
const int num_point_pairs,
const double *model,
float *err,
double thresh
) {
float t = (float)(thresh * thresh);
int i, n = num_point_pairs, num_inliers = 0;
compute_error(point_pairs, num_point_pairs, model, err);
for (i = 0; i < n; i++) {
if (err[i] <= t) {
// This is an inlier
point_pairs[i].should_consider = 1;
num_inliers += 1;
} else {
point_pairs[i].should_consider = 0;
}
}
return num_inliers;
}
// Determines the number of iterations required to achieve the desired confidence level.
//
// The equation used to determine the number of iterations to do is:
// 1 - confidence = (1 - inlier_probability^num_points)^num_iters
//
// Solving for num_iters:
//
// num_iters = log(1 - confidence) / log(1 - inlier_probability^num_points)
//
// A more in-depth explanation can be found at https://en.wikipedia.org/wiki/Random_sample_consensus
// under the 'Parameters' heading
static int ransac_update_num_iters(double confidence, double num_outliers, int max_iters)
{
double num, denom;
confidence = av_clipd(confidence, 0.0, 1.0);
num_outliers = av_clipd(num_outliers, 0.0, 1.0);
// avoid inf's & nan's
num = FFMAX(1.0 - confidence, DBL_MIN);
denom = 1.0 - pow(1.0 - num_outliers, 3);
if (denom < DBL_MIN) {
return 0;
}
num = log(num);
denom = log(denom);
return denom >= 0 || -num >= max_iters * (-denom) ? max_iters : (int)round(num / denom);
}
// Estimates an affine transform between the given pairs of points using RANdom
// SAmple Consensus
static int estimate_affine_2d(
DeshakeOpenCLContext *deshake_ctx,
MotionVector *point_pairs,
DebugMatches *debug_matches,
const int num_point_pairs,
double *model_out,
const double threshold,
const int max_iters,
const double confidence
) {
int result = 0;
double best_model[6], model[6];
MotionVector pairs_subset[3], best_pairs[3];
int iter, niters = FFMAX(max_iters, 1);
int good_count, max_good_count = 0;
// We need at least 3 points to build a model from
if (num_point_pairs < 3) {
return 0;
} else if (num_point_pairs == 3) {
// There are only 3 points, so RANSAC doesn't apply here
run_estimate_kernel(point_pairs, model_out);
for (int i = 0; i < 3; ++i) {
point_pairs[i].should_consider = 1;
}
return 1;
}
for (iter = 0; iter < niters; ++iter) {
int found = get_subset(&deshake_ctx->alfg, point_pairs, num_point_pairs, pairs_subset, 10000);
if (!found) {
if (iter == 0) {
return 0;
}
break;
}
run_estimate_kernel(pairs_subset, model);
good_count = find_inliers(point_pairs, num_point_pairs, model, deshake_ctx->ransac_err, threshold);
if (good_count > FFMAX(max_good_count, 2)) {
for (int mi = 0; mi < 6; ++mi) {
best_model[mi] = model[mi];
}
for (int pi = 0; pi < 3; pi++) {
best_pairs[pi] = pairs_subset[pi];
}
max_good_count = good_count;
niters = ransac_update_num_iters(
confidence,
(double)(num_point_pairs - good_count) / num_point_pairs,
niters
);
}
}
if (max_good_count > 0) {
for (int mi = 0; mi < 6; ++mi) {
model_out[mi] = best_model[mi];
}
for (int pi = 0; pi < 3; ++pi) {
debug_matches->model_matches[pi] = best_pairs[pi];
}
debug_matches->num_model_matches = 3;
// Find the inliers again for the best model for debugging
find_inliers(point_pairs, num_point_pairs, best_model, deshake_ctx->ransac_err, threshold);
result = 1;
}
return result;
}
// "Wiggles" the first point in best_pairs around a tiny bit in order to decrease the
// total error
static void optimize_model(
DeshakeOpenCLContext *deshake_ctx,
MotionVector *best_pairs,
MotionVector *inliers,
const int num_inliers,
float best_err,
double *model_out
) {
float move_x_val = 0.01;
float move_y_val = 0.01;
int move_x = 1;
float old_move_x_val = 0;
double model[6];
int last_changed = 0;
for (int iters = 0; iters < 200; iters++) {
float total_err = 0;
if (move_x) {
best_pairs[0].p.p2.s[0] += move_x_val;
} else {
best_pairs[0].p.p2.s[0] += move_y_val;
}
run_estimate_kernel(best_pairs, model);
compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
for (int j = 0; j < num_inliers; j++) {
total_err += deshake_ctx->ransac_err[j];
}
if (total_err < best_err) {
for (int mi = 0; mi < 6; ++mi) {
model_out[mi] = model[mi];
}
best_err = total_err;
last_changed = iters;
} else {
// Undo the change
if (move_x) {
best_pairs[0].p.p2.s[0] -= move_x_val;
} else {
best_pairs[0].p.p2.s[0] -= move_y_val;
}
if (iters - last_changed > 4) {
// We've already improved the model as much as we can
break;
}
old_move_x_val = move_x_val;
if (move_x) {
move_x_val *= -1;
} else {
move_y_val *= -1;
}
if (old_move_x_val < 0) {
move_x = 0;
} else {
move_x = 1;
}
}
}
}
// Uses a process similar to that of RANSAC to find a transform that minimizes
// the total error for a set of point matches determined to be inliers
//
// (Pick random subsets, compute model, find total error, iterate until error
// is minimized.)
static int minimize_error(
DeshakeOpenCLContext *deshake_ctx,
MotionVector *inliers,
DebugMatches *debug_matches,
const int num_inliers,
double *model_out,
const int max_iters
) {
int result = 0;
float best_err = FLT_MAX;
double best_model[6], model[6];
MotionVector pairs_subset[3], best_pairs[3];
for (int i = 0; i < max_iters; i++) {
float total_err = 0;
int found = get_subset(&deshake_ctx->alfg, inliers, num_inliers, pairs_subset, 10000);
if (!found) {
if (i == 0) {
return 0;
}
break;
}
run_estimate_kernel(pairs_subset, model);
compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
for (int j = 0; j < num_inliers; j++) {
total_err += deshake_ctx->ransac_err[j];
}
if (total_err < best_err) {
for (int mi = 0; mi < 6; ++mi) {
best_model[mi] = model[mi];
}
for (int pi = 0; pi < 3; pi++) {
best_pairs[pi] = pairs_subset[pi];
}
best_err = total_err;
}
}
for (int mi = 0; mi < 6; ++mi) {
model_out[mi] = best_model[mi];
}
for (int pi = 0; pi < 3; ++pi) {
debug_matches->model_matches[pi] = best_pairs[pi];
}
debug_matches->num_model_matches = 3;
result = 1;
optimize_model(deshake_ctx, best_pairs, inliers, num_inliers, best_err, model_out);
return result;
}
// End code from OpenCV
// Decomposes a similarity matrix into translation, rotation, scale, and skew
//
// See http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
static FrameDelta decompose_transform(double *model)
{
FrameDelta ret;
double a = model[0];
double c = model[1];
double e = model[2];
double b = model[3];
double d = model[4];
double f = model[5];
double delta = a * d - b * c;
memset(&ret, 0, sizeof(ret));
ret.translation.s[0] = e;
ret.translation.s[1] = f;
// This is the QR method
if (a != 0 || b != 0) {
double r = hypot(a, b);
ret.rotation = FFSIGN(b) * acos(a / r);
ret.scale.s[0] = r;
ret.scale.s[1] = delta / r;
ret.skew.s[0] = atan((a * c + b * d) / (r * r));
ret.skew.s[1] = 0;
} else if (c != 0 || d != 0) {
double s = sqrt(c * c + d * d);
ret.rotation = M_PI / 2 - FFSIGN(d) * acos(-c / s);
ret.scale.s[0] = delta / s;
ret.scale.s[1] = s;
ret.skew.s[0] = 0;
ret.skew.s[1] = atan((a * c + b * d) / (s * s));
} // otherwise there is only translation
return ret;
}
// Move valid vectors from the 2d buffer into a 1d buffer where they are contiguous
static int make_vectors_contig(
DeshakeOpenCLContext *deshake_ctx,
int size_y,
int size_x
) {
int num_vectors = 0;
for (int i = 0; i < size_y; ++i) {
for (int j = 0; j < size_x; ++j) {
MotionVector v = deshake_ctx->matches_host[j + i * size_x];
if (v.should_consider) {
deshake_ctx->matches_contig_host[num_vectors] = v;
++num_vectors;
}
// Make sure we do not exceed the amount of space we allocated for these vectors
if (num_vectors == MATCHES_CONTIG_SIZE - 1) {
return num_vectors;
}
}
}
return num_vectors;
}
// Returns the gaussian kernel value for the given x coordinate and sigma value
static float gaussian_for(int x, float sigma) {
return 1.0f / expf(((float)x * (float)x) / (2.0f * sigma * sigma));
}
// Makes a normalized gaussian kernel of the given length for the given sigma
// and places it in gauss_kernel
static void make_gauss_kernel(float *gauss_kernel, float length, float sigma)
{
float gauss_sum = 0;
int window_half = length / 2;
for (int i = 0; i < length; ++i) {
float val = gaussian_for(i - window_half, sigma);
gauss_sum += val;
gauss_kernel[i] = val;
}
// Normalize the gaussian values
for (int i = 0; i < length; ++i) {
gauss_kernel[i] /= gauss_sum;
}
}
// Returns indices to start and end iteration at in order to iterate over a window
// of length size centered at the current frame in a ringbuffer
//
// Always returns numbers that result in a window of length size, even if that
// means specifying negative indices or indices past the end of the values in the
// ringbuffers. Make sure you clip indices appropriately within your loop.
static IterIndices start_end_for(DeshakeOpenCLContext *deshake_ctx, int length) {
IterIndices indices;
indices.start = deshake_ctx->abs_motion.curr_frame_offset - (length / 2);
indices.end = deshake_ctx->abs_motion.curr_frame_offset + (length / 2) + (length % 2);
return indices;
}
// Sets val to the value in the given ringbuffer at the given offset, taking care of
// clipping the offset into the appropriate range
static void ringbuf_float_at(
DeshakeOpenCLContext *deshake_ctx,
AVFifo *values,
float *val,
int offset
) {
int clip_start, clip_end, offset_clipped;
if (deshake_ctx->abs_motion.data_end_offset != -1) {
clip_end = deshake_ctx->abs_motion.data_end_offset;
} else {
// This expression represents the last valid index in the buffer,
// which we use repeatedly at the end of the video.
clip_end = deshake_ctx->smooth_window - av_fifo_can_write(values) - 1;
}
if (deshake_ctx->abs_motion.data_start_offset != -1) {
clip_start = deshake_ctx->abs_motion.data_start_offset;
} else {
// Negative indices will occur at the start of the video, and we want
// them to be clipped to 0 in order to repeatedly use the position of
// the first frame.
clip_start = 0;
}
offset_clipped = av_clip(
offset,
clip_start,
clip_end
);
av_fifo_peek(values, val, 1, offset_clipped);
}
// Returns smoothed current frame value of the given buffer of floats based on the
// given Gaussian kernel and its length (also the window length, centered around the
// current frame) and the "maximum value" of the motion.
//
// This "maximum value" should be the width / height of the image in the case of
// translation and an empirically chosen constant for rotation / scale.
//
// The sigma chosen to generate the final gaussian kernel with used to smooth the
// camera path is either hardcoded (set by user, deshake_ctx->smooth_percent) or
// adaptively chosen.
static float smooth(
DeshakeOpenCLContext *deshake_ctx,
float *gauss_kernel,
int length,
float max_val,
AVFifo *values
) {
float new_large_s = 0, new_small_s = 0, new_best = 0, old, diff_between,
percent_of_max, inverted_percent;
IterIndices indices = start_end_for(deshake_ctx, length);
float large_sigma = 40.0f;
float small_sigma = 2.0f;
float best_sigma;
if (deshake_ctx->smooth_percent) {
best_sigma = (large_sigma - 0.5f) * deshake_ctx->smooth_percent + 0.5f;
} else {
// Strategy to adaptively smooth trajectory:
//
// 1. Smooth path with large and small sigma values
// 2. Take the absolute value of the difference between them
// 3. Get a percentage by putting the difference over the "max value"
// 4, Invert the percentage
// 5. Calculate a new sigma value weighted towards the larger sigma value
// 6. Determine final smoothed trajectory value using that sigma
make_gauss_kernel(gauss_kernel, length, large_sigma);
for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
ringbuf_float_at(deshake_ctx, values, &old, i);
new_large_s += old * gauss_kernel[j];
}
make_gauss_kernel(gauss_kernel, length, small_sigma);
for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
ringbuf_float_at(deshake_ctx, values, &old, i);
new_small_s += old * gauss_kernel[j];
}
diff_between = fabsf(new_large_s - new_small_s);
percent_of_max = diff_between / max_val;
inverted_percent = 1 - percent_of_max;
best_sigma = large_sigma * powf(inverted_percent, 40);
}
make_gauss_kernel(gauss_kernel, length, best_sigma);
for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
ringbuf_float_at(deshake_ctx, values, &old, i);
new_best += old * gauss_kernel[j];
}
return new_best;
}
// Returns the position of the given point after the transform is applied
static cl_float2 transformed_point(float x, float y, float *transform) {
cl_float2 ret;
ret.s[0] = x * transform[0] + y * transform[1] + transform[2];
ret.s[1] = x * transform[3] + y * transform[4] + transform[5];
return ret;
}
// Creates an affine transform that scales from the center of a frame
static void transform_center_scale(
float x_shift,
float y_shift,
float angle,
float scale_x,
float scale_y,
float center_w,
float center_h,
float *matrix
) {
cl_float2 center_s;
float center_s_w, center_s_h;
ff_get_matrix(
0,
0,
0,
scale_x,
scale_y,
matrix
);
center_s = transformed_point(center_w, center_h, matrix);
center_s_w = center_w - center_s.s[0];
center_s_h = center_h - center_s.s[1];
ff_get_matrix(
x_shift + center_s_w,
y_shift + center_s_h,
angle,
scale_x,
scale_y,
matrix
);
}
// Determines the crop necessary to eliminate black borders from a smoothed frame
// and updates target crop accordingly
static void update_needed_crop(
CropInfo* crop,
float *transform,
float frame_width,
float frame_height
) {
float new_width, new_height, adjusted_width, adjusted_height, adjusted_x, adjusted_y;
cl_float2 top_left = transformed_point(0, 0, transform);
cl_float2 top_right = transformed_point(frame_width, 0, transform);
cl_float2 bottom_left = transformed_point(0, frame_height, transform);
cl_float2 bottom_right = transformed_point(frame_width, frame_height, transform);
float ar_h = frame_height / frame_width;
float ar_w = frame_width / frame_height;
if (crop->bottom_right.s[0] == 0) {
// The crop hasn't been set to the original size of the plane
crop->bottom_right.s[0] = frame_width;
crop->bottom_right.s[1] = frame_height;
}
crop->top_left.s[0] = FFMAX3(
crop->top_left.s[0],
top_left.s[0],
bottom_left.s[0]
);
crop->top_left.s[1] = FFMAX3(
crop->top_left.s[1],
top_left.s[1],
top_right.s[1]
);
crop->bottom_right.s[0] = FFMIN3(
crop->bottom_right.s[0],
bottom_right.s[0],
top_right.s[0]
);
crop->bottom_right.s[1] = FFMIN3(
crop->bottom_right.s[1],
bottom_right.s[1],
bottom_left.s[1]
);
// Make sure our potentially new bounding box has the same aspect ratio
new_height = crop->bottom_right.s[1] - crop->top_left.s[1];
new_width = crop->bottom_right.s[0] - crop->top_left.s[0];
adjusted_width = new_height * ar_w;
adjusted_x = crop->bottom_right.s[0] - adjusted_width;
if (adjusted_x >= crop->top_left.s[0]) {
crop->top_left.s[0] = adjusted_x;
} else {
adjusted_height = new_width * ar_h;
adjusted_y = crop->bottom_right.s[1] - adjusted_height;
crop->top_left.s[1] = adjusted_y;
}
}
static av_cold void deshake_opencl_uninit(AVFilterContext *avctx)
{
DeshakeOpenCLContext *ctx = avctx->priv;
cl_int cle;
for (int i = 0; i < RingbufCount; i++)
av_fifo_freep2(&ctx->abs_motion.ringbuffers[i]);
if (ctx->debug_on)
free_debug_matches(&ctx->abs_motion);
if (ctx->gauss_kernel)
av_freep(&ctx->gauss_kernel);
if (ctx->ransac_err)
av_freep(&ctx->ransac_err);
if (ctx->matches_host)
av_freep(&ctx->matches_host);
if (ctx->matches_contig_host)
av_freep(&ctx->matches_contig_host);
if (ctx->inliers)
av_freep(&ctx->inliers);
ff_framequeue_free(&ctx->fq);
CL_RELEASE_KERNEL(ctx->kernel_grayscale);
CL_RELEASE_KERNEL(ctx->kernel_harris_response);
CL_RELEASE_KERNEL(ctx->kernel_refine_features);
CL_RELEASE_KERNEL(ctx->kernel_brief_descriptors);
CL_RELEASE_KERNEL(ctx->kernel_match_descriptors);
CL_RELEASE_KERNEL(ctx->kernel_crop_upscale);
if (ctx->debug_on)
CL_RELEASE_KERNEL(ctx->kernel_draw_debug_info);
CL_RELEASE_QUEUE(ctx->command_queue);
if (!ctx->is_yuv)
CL_RELEASE_MEMORY(ctx->grayscale);
CL_RELEASE_MEMORY(ctx->harris_buf);
CL_RELEASE_MEMORY(ctx->refined_features);
CL_RELEASE_MEMORY(ctx->prev_refined_features);
CL_RELEASE_MEMORY(ctx->brief_pattern);
CL_RELEASE_MEMORY(ctx->descriptors);
CL_RELEASE_MEMORY(ctx->prev_descriptors);
CL_RELEASE_MEMORY(ctx->matches);
CL_RELEASE_MEMORY(ctx->matches_contig);
CL_RELEASE_MEMORY(ctx->transform_y);
CL_RELEASE_MEMORY(ctx->transform_uv);
if (ctx->debug_on) {
CL_RELEASE_MEMORY(ctx->debug_matches);
CL_RELEASE_MEMORY(ctx->debug_model_matches);
}
ff_opencl_filter_uninit(avctx);
}
static int deshake_opencl_init(AVFilterContext *avctx)
{
DeshakeOpenCLContext *ctx = avctx->priv;
AVFilterLink *outlink = avctx->outputs[0];
AVFilterLink *inlink = avctx->inputs[0];
// Pointer to the host-side pattern buffer to be initialized and then copied
// to the GPU
PointPair *pattern_host = NULL;
cl_int cle;
int err;
cl_ulong8 zeroed_ulong8;
FFFrameQueueGlobal fqg;
cl_image_format grayscale_format;
cl_image_desc grayscale_desc;
cl_command_queue_properties queue_props;
const enum AVPixelFormat disallowed_formats[14] = {
AV_PIX_FMT_GBRP,
AV_PIX_FMT_GBRP9BE,
AV_PIX_FMT_GBRP9LE,
AV_PIX_FMT_GBRP10BE,
AV_PIX_FMT_GBRP10LE,
AV_PIX_FMT_GBRP16BE,
AV_PIX_FMT_GBRP16LE,
AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRAP16BE,
AV_PIX_FMT_GBRAP16LE,
AV_PIX_FMT_GBRAP12BE,
AV_PIX_FMT_GBRAP12LE,
AV_PIX_FMT_GBRAP10BE,
AV_PIX_FMT_GBRAP10LE
};
// Number of elements for an array
const int image_grid_32 = ROUNDED_UP_DIV(outlink->h, 32) * ROUNDED_UP_DIV(outlink->w, 32);
const int descriptor_buf_size = image_grid_32 * (BREIFN / 8);
const int features_buf_size = image_grid_32 * sizeof(cl_float2);
const AVHWFramesContext *hw_frames_ctx = (AVHWFramesContext*)inlink->hw_frames_ctx->data;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hw_frames_ctx->sw_format);
av_assert0(hw_frames_ctx);
av_assert0(desc);
ff_framequeue_global_init(&fqg);
ff_framequeue_init(&ctx->fq, &fqg);
ctx->eof = 0;
ctx->smooth_window = (int)(av_q2d(avctx->inputs[0]->frame_rate) * ctx->smooth_window_multiplier);
ctx->curr_frame = 0;
memset(&zeroed_ulong8, 0, sizeof(cl_ulong8));
ctx->gauss_kernel = av_malloc_array(ctx->smooth_window, sizeof(float));
if (!ctx->gauss_kernel) {
err = AVERROR(ENOMEM);
goto fail;
}
ctx->ransac_err = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(float));
if (!ctx->ransac_err) {
err = AVERROR(ENOMEM);
goto fail;
}
for (int i = 0; i < RingbufCount; i++) {
ctx->abs_motion.ringbuffers[i] = av_fifo_alloc2(ctx->smooth_window,
sizeof(float), 0);
if (!ctx->abs_motion.ringbuffers[i]) {
err = AVERROR(ENOMEM);
goto fail;
}
}
if (ctx->debug_on) {
ctx->abs_motion.debug_matches = av_fifo_alloc2(
ctx->smooth_window / 2,
sizeof(DebugMatches), 0
);
if (!ctx->abs_motion.debug_matches) {
err = AVERROR(ENOMEM);
goto fail;
}
}
ctx->abs_motion.curr_frame_offset = 0;
ctx->abs_motion.data_start_offset = -1;
ctx->abs_motion.data_end_offset = -1;
pattern_host = av_malloc_array(BREIFN, sizeof(PointPair));
if (!pattern_host) {
err = AVERROR(ENOMEM);
goto fail;
}
ctx->matches_host = av_malloc_array(image_grid_32, sizeof(MotionVector));
if (!ctx->matches_host) {
err = AVERROR(ENOMEM);
goto fail;
}
ctx->matches_contig_host = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(MotionVector));
if (!ctx->matches_contig_host) {
err = AVERROR(ENOMEM);
goto fail;
}
ctx->inliers = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(MotionVector));
if (!ctx->inliers) {
err = AVERROR(ENOMEM);
goto fail;
}
// Initializing the patch pattern for building BREIF descriptors with
av_lfg_init(&ctx->alfg, 234342424);
for (int i = 0; i < BREIFN; ++i) {
PointPair pair;
for (int j = 0; j < 2; ++j) {
pair.p1.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
pair.p2.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
}
pattern_host[i] = pair;
}
for (int i = 0; i < 14; i++) {
if (ctx->sw_format == disallowed_formats[i]) {
av_log(avctx, AV_LOG_ERROR, "unsupported format in deshake_opencl.\n");
err = AVERROR(ENOSYS);
goto fail;
}
}
if (desc->flags & AV_PIX_FMT_FLAG_RGB) {
ctx->is_yuv = 0;
} else {
ctx->is_yuv = 1;
}
ctx->sw_format = hw_frames_ctx->sw_format;
err = ff_opencl_filter_load_program(avctx, &ff_source_deshake_cl, 1);
if (err < 0)
goto fail;
if (ctx->debug_on) {
queue_props = CL_QUEUE_PROFILING_ENABLE;
} else {
queue_props = 0;
}
ctx->command_queue = clCreateCommandQueue(
ctx->ocf.hwctx->context,
ctx->ocf.hwctx->device_id,
queue_props,
&cle
);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create OpenCL command queue %d.\n", cle);
CL_CREATE_KERNEL(ctx, grayscale);
CL_CREATE_KERNEL(ctx, harris_response);
CL_CREATE_KERNEL(ctx, refine_features);
CL_CREATE_KERNEL(ctx, brief_descriptors);
CL_CREATE_KERNEL(ctx, match_descriptors);
CL_CREATE_KERNEL(ctx, transform);
CL_CREATE_KERNEL(ctx, crop_upscale);
if (ctx->debug_on)
CL_CREATE_KERNEL(ctx, draw_debug_info);
if (!ctx->is_yuv) {
grayscale_format.image_channel_order = CL_R;
grayscale_format.image_channel_data_type = CL_FLOAT;
grayscale_desc = (cl_image_desc) {
.image_type = CL_MEM_OBJECT_IMAGE2D,
.image_width = outlink->w,
.image_height = outlink->h,
.image_depth = 0,
.image_array_size = 0,
.image_row_pitch = 0,
.image_slice_pitch = 0,
.num_mip_levels = 0,
.num_samples = 0,
.buffer = NULL,
};
ctx->grayscale = clCreateImage(
ctx->ocf.hwctx->context,
0,
&grayscale_format,
&grayscale_desc,
NULL,
&cle
);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create grayscale image: %d.\n", cle);
}
CL_CREATE_BUFFER(ctx, harris_buf, outlink->h * outlink->w * sizeof(float));
CL_CREATE_BUFFER(ctx, refined_features, features_buf_size);
CL_CREATE_BUFFER(ctx, prev_refined_features, features_buf_size);
CL_CREATE_BUFFER_FLAGS(
ctx,
brief_pattern,
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
BREIFN * sizeof(PointPair),
pattern_host
);
CL_CREATE_BUFFER(ctx, descriptors, descriptor_buf_size);
CL_CREATE_BUFFER(ctx, prev_descriptors, descriptor_buf_size);
CL_CREATE_BUFFER(ctx, matches, image_grid_32 * sizeof(MotionVector));
CL_CREATE_BUFFER(ctx, matches_contig, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
CL_CREATE_BUFFER(ctx, transform_y, 9 * sizeof(float));
CL_CREATE_BUFFER(ctx, transform_uv, 9 * sizeof(float));
if (ctx->debug_on) {
CL_CREATE_BUFFER(ctx, debug_matches, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
CL_CREATE_BUFFER(ctx, debug_model_matches, 3 * sizeof(MotionVector));
}
ctx->initialized = 1;
av_freep(&pattern_host);
return 0;
fail:
av_freep(&pattern_host);
return err;
}
// Logs debug information about the transform data
static void transform_debug(AVFilterContext *avctx, float *new_vals, float *old_vals, int curr_frame) {
av_log(avctx, AV_LOG_VERBOSE,
"Frame %d:\n"
"\tframe moved from: %f x, %f y\n"
"\t to: %f x, %f y\n"
"\t rotated from: %f degrees\n"
"\t to: %f degrees\n"
"\t scaled from: %f x, %f y\n"
"\t to: %f x, %f y\n"
"\n"
"\tframe moved by: %f x, %f y\n"
"\t rotated by: %f degrees\n"
"\t scaled by: %f x, %f y\n",
curr_frame,
old_vals[RingbufX], old_vals[RingbufY],
new_vals[RingbufX], new_vals[RingbufY],
old_vals[RingbufRot] * (180.0 / M_PI),
new_vals[RingbufRot] * (180.0 / M_PI),
old_vals[RingbufScaleX], old_vals[RingbufScaleY],
new_vals[RingbufScaleX], new_vals[RingbufScaleY],
old_vals[RingbufX] - new_vals[RingbufX], old_vals[RingbufY] - new_vals[RingbufY],
old_vals[RingbufRot] * (180.0 / M_PI) - new_vals[RingbufRot] * (180.0 / M_PI),
new_vals[RingbufScaleX] / old_vals[RingbufScaleX], new_vals[RingbufScaleY] / old_vals[RingbufScaleY]
);
}
// Uses the buffered motion information to determine a transform that smooths the
// given frame and applies it
static int filter_frame(AVFilterLink *link, AVFrame *input_frame)
{
AVFilterContext *avctx = link->dst;
AVFilterLink *outlink = avctx->outputs[0];
DeshakeOpenCLContext *deshake_ctx = avctx->priv;
AVFrame *cropped_frame = NULL, *transformed_frame = NULL;
int err;
cl_int cle;
float new_vals[RingbufCount];
float old_vals[RingbufCount];
// Luma (in the case of YUV) transform, or just the transform in the case of RGB
float transform_y[9];
// Chroma transform
float transform_uv[9];
// Luma crop transform (or RGB)
float transform_crop_y[9];
// Chroma crop transform
float transform_crop_uv[9];
float transform_debug_rgb[9];
size_t global_work[2];
int64_t duration;
cl_mem src, transformed, dst;
cl_mem transforms[3];
CropInfo crops[3];
cl_event transform_event, crop_upscale_event;
DebugMatches debug_matches;
cl_int num_model_matches;
const float center_w = (float)input_frame->width / 2;
const float center_h = (float)input_frame->height / 2;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(deshake_ctx->sw_format);
const int chroma_width = AV_CEIL_RSHIFT(input_frame->width, desc->log2_chroma_w);
const int chroma_height = AV_CEIL_RSHIFT(input_frame->height, desc->log2_chroma_h);
const float center_w_chroma = (float)chroma_width / 2;
const float center_h_chroma = (float)chroma_height / 2;
const float luma_w_over_chroma_w = ((float)input_frame->width / (float)chroma_width);
const float luma_h_over_chroma_h = ((float)input_frame->height / (float)chroma_height);
if (deshake_ctx->debug_on) {
av_fifo_read(
deshake_ctx->abs_motion.debug_matches,
&debug_matches, 1);
}
#if FF_API_PKT_DURATION
FF_DISABLE_DEPRECATION_WARNINGS
if (input_frame->pkt_duration) {
duration = input_frame->pkt_duration;
} else
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (input_frame->duration) {
duration = input_frame->duration;
} else {
duration = av_rescale_q(1, av_inv_q(outlink->frame_rate), outlink->time_base);
}
deshake_ctx->duration = input_frame->pts + duration;
// Get the absolute transform data for this frame
for (int i = 0; i < RingbufCount; i++) {
av_fifo_peek(deshake_ctx->abs_motion.ringbuffers[i],
&old_vals[i], 1,
deshake_ctx->abs_motion.curr_frame_offset);
}
if (deshake_ctx->tripod_mode) {
// If tripod mode is turned on we simply undo all motion relative to the
// first frame
new_vals[RingbufX] = 0.0f;
new_vals[RingbufY] = 0.0f;
new_vals[RingbufRot] = 0.0f;
new_vals[RingbufScaleX] = 1.0f;
new_vals[RingbufScaleY] = 1.0f;
} else {
// Tripod mode is off and we need to smooth a moving camera
new_vals[RingbufX] = smooth(
deshake_ctx,
deshake_ctx->gauss_kernel,
deshake_ctx->smooth_window,
input_frame->width,
deshake_ctx->abs_motion.ringbuffers[RingbufX]
);
new_vals[RingbufY] = smooth(
deshake_ctx,
deshake_ctx->gauss_kernel,
deshake_ctx->smooth_window,
input_frame->height,
deshake_ctx->abs_motion.ringbuffers[RingbufY]
);
new_vals[RingbufRot] = smooth(
deshake_ctx,
deshake_ctx->gauss_kernel,
deshake_ctx->smooth_window,
M_PI / 4,
deshake_ctx->abs_motion.ringbuffers[RingbufRot]
);
new_vals[RingbufScaleX] = smooth(
deshake_ctx,
deshake_ctx->gauss_kernel,
deshake_ctx->smooth_window,
2.0f,
deshake_ctx->abs_motion.ringbuffers[RingbufScaleX]
);
new_vals[RingbufScaleY] = smooth(
deshake_ctx,
deshake_ctx->gauss_kernel,
deshake_ctx->smooth_window,
2.0f,
deshake_ctx->abs_motion.ringbuffers[RingbufScaleY]
);
}
transform_center_scale(
old_vals[RingbufX] - new_vals[RingbufX],
old_vals[RingbufY] - new_vals[RingbufY],
old_vals[RingbufRot] - new_vals[RingbufRot],
new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
center_w,
center_h,
transform_y
);
transform_center_scale(
(old_vals[RingbufX] - new_vals[RingbufX]) / luma_w_over_chroma_w,
(old_vals[RingbufY] - new_vals[RingbufY]) / luma_h_over_chroma_h,
old_vals[RingbufRot] - new_vals[RingbufRot],
new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
center_w_chroma,
center_h_chroma,
transform_uv
);
CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_y, NULL);
CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_uv, 9 * sizeof(float), transform_uv, NULL);
if (deshake_ctx->debug_on)
transform_debug(avctx, new_vals, old_vals, deshake_ctx->curr_frame);
cropped_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!cropped_frame) {
err = AVERROR(ENOMEM);
goto fail;
}
transformed_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!transformed_frame) {
err = AVERROR(ENOMEM);
goto fail;
}
transforms[0] = deshake_ctx->transform_y;
transforms[1] = transforms[2] = deshake_ctx->transform_uv;
for (int p = 0; p < FF_ARRAY_ELEMS(transformed_frame->data); p++) {
// Transform all of the planes appropriately
src = (cl_mem)input_frame->data[p];
transformed = (cl_mem)transformed_frame->data[p];
if (!transformed)
break;
err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
if (err < 0)
goto fail;
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_transform,
global_work,
NULL,
&transform_event,
{ sizeof(cl_mem), &src },
{ sizeof(cl_mem), &transformed },
{ sizeof(cl_mem), &transforms[p] },
);
}
if (deshake_ctx->debug_on && !deshake_ctx->is_yuv && debug_matches.num_matches > 0) {
CL_BLOCKING_WRITE_BUFFER(
deshake_ctx->command_queue,
deshake_ctx->debug_matches,
debug_matches.num_matches * sizeof(MotionVector),
debug_matches.matches,
NULL
);
CL_BLOCKING_WRITE_BUFFER(
deshake_ctx->command_queue,
deshake_ctx->debug_model_matches,
debug_matches.num_model_matches * sizeof(MotionVector),
debug_matches.model_matches,
NULL
);
num_model_matches = debug_matches.num_model_matches;
// Invert the transform
transform_center_scale(
new_vals[RingbufX] - old_vals[RingbufX],
new_vals[RingbufY] - old_vals[RingbufY],
new_vals[RingbufRot] - old_vals[RingbufRot],
old_vals[RingbufScaleX] / new_vals[RingbufScaleX],
old_vals[RingbufScaleY] / new_vals[RingbufScaleY],
center_w,
center_h,
transform_debug_rgb
);
CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_debug_rgb, NULL);
transformed = (cl_mem)transformed_frame->data[0];
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_draw_debug_info,
(size_t[]){ debug_matches.num_matches },
NULL,
NULL,
{ sizeof(cl_mem), &transformed },
{ sizeof(cl_mem), &deshake_ctx->debug_matches },
{ sizeof(cl_mem), &deshake_ctx->debug_model_matches },
{ sizeof(cl_int), &num_model_matches },
{ sizeof(cl_mem), &deshake_ctx->transform_y }
);
}
if (deshake_ctx->should_crop) {
// Generate transforms for cropping
transform_center_scale(
(old_vals[RingbufX] - new_vals[RingbufX]) / 5,
(old_vals[RingbufY] - new_vals[RingbufY]) / 5,
(old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
center_w,
center_h,
transform_crop_y
);
update_needed_crop(&deshake_ctx->crop_y, transform_crop_y, input_frame->width, input_frame->height);
transform_center_scale(
(old_vals[RingbufX] - new_vals[RingbufX]) / (5 * luma_w_over_chroma_w),
(old_vals[RingbufY] - new_vals[RingbufY]) / (5 * luma_h_over_chroma_h),
(old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
center_w_chroma,
center_h_chroma,
transform_crop_uv
);
update_needed_crop(&deshake_ctx->crop_uv, transform_crop_uv, chroma_width, chroma_height);
crops[0] = deshake_ctx->crop_y;
crops[1] = crops[2] = deshake_ctx->crop_uv;
for (int p = 0; p < FF_ARRAY_ELEMS(cropped_frame->data); p++) {
// Crop all of the planes appropriately
dst = (cl_mem)cropped_frame->data[p];
transformed = (cl_mem)transformed_frame->data[p];
if (!dst)
break;
err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
if (err < 0)
goto fail;
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_crop_upscale,
global_work,
NULL,
&crop_upscale_event,
{ sizeof(cl_mem), &transformed },
{ sizeof(cl_mem), &dst },
{ sizeof(cl_float2), &crops[p].top_left },
{ sizeof(cl_float2), &crops[p].bottom_right },
);
}
}
if (deshake_ctx->curr_frame < deshake_ctx->smooth_window / 2) {
// This means we are somewhere at the start of the video. We need to
// increment the current frame offset until it reaches the center of
// the ringbuffers (as the current frame will be located there for
// the rest of the video).
//
// The end of the video is taken care of by draining motion data
// one-by-one out of the buffer, causing the (at that point fixed)
// offset to move towards later frames' data.
++deshake_ctx->abs_motion.curr_frame_offset;
}
if (deshake_ctx->abs_motion.data_end_offset != -1) {
// Keep the end offset in sync with the frame it's supposed to be
// positioned at
--deshake_ctx->abs_motion.data_end_offset;
if (deshake_ctx->abs_motion.data_end_offset == deshake_ctx->abs_motion.curr_frame_offset - 1) {
// The end offset would be the start of the new video sequence; flip to
// start offset
deshake_ctx->abs_motion.data_end_offset = -1;
deshake_ctx->abs_motion.data_start_offset = deshake_ctx->abs_motion.curr_frame_offset;
}
} else if (deshake_ctx->abs_motion.data_start_offset != -1) {
// Keep the start offset in sync with the frame it's supposed to be
// positioned at
--deshake_ctx->abs_motion.data_start_offset;
}
if (deshake_ctx->debug_on) {
deshake_ctx->transform_time += ff_opencl_get_event_time(transform_event);
if (deshake_ctx->should_crop) {
deshake_ctx->crop_upscale_time += ff_opencl_get_event_time(crop_upscale_event);
}
}
++deshake_ctx->curr_frame;
if (deshake_ctx->debug_on)
av_freep(&debug_matches.matches);
if (deshake_ctx->should_crop) {
err = av_frame_copy_props(cropped_frame, input_frame);
if (err < 0)
goto fail;
av_frame_free(&transformed_frame);
av_frame_free(&input_frame);
return ff_filter_frame(outlink, cropped_frame);
} else {
err = av_frame_copy_props(transformed_frame, input_frame);
if (err < 0)
goto fail;
av_frame_free(&cropped_frame);
av_frame_free(&input_frame);
return ff_filter_frame(outlink, transformed_frame);
}
fail:
clFinish(deshake_ctx->command_queue);
if (deshake_ctx->debug_on)
if (debug_matches.matches)
av_freep(&debug_matches.matches);
av_frame_free(&input_frame);
av_frame_free(&transformed_frame);
av_frame_free(&cropped_frame);
return err;
}
// Add the given frame to the frame queue to eventually be processed.
//
// Also determines the motion from the previous frame and updates the stored
// motion information accordingly.
static int queue_frame(AVFilterLink *link, AVFrame *input_frame)
{
AVFilterContext *avctx = link->dst;
DeshakeOpenCLContext *deshake_ctx = avctx->priv;
int err;
int num_vectors;
int num_inliers = 0;
cl_int cle;
FrameDelta relative;
SimilarityMatrix model;
size_t global_work[2];
size_t harris_global_work[2];
size_t grid_32_global_work[2];
int grid_32_h, grid_32_w;
size_t local_work[2];
cl_mem src, temp;
float prev_vals[5];
float new_vals[5];
cl_event grayscale_event, harris_response_event, refine_features_event,
brief_event, match_descriptors_event, read_buf_event;
DebugMatches debug_matches;
num_vectors = 0;
local_work[0] = 8;
local_work[1] = 8;
err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, 0, 0);
if (err < 0)
goto fail;
err = ff_opencl_filter_work_size_from_image(avctx, harris_global_work, input_frame, 0, 8);
if (err < 0)
goto fail;
err = ff_opencl_filter_work_size_from_image(avctx, grid_32_global_work, input_frame, 0, 32);
if (err < 0)
goto fail;
// We want a single work-item for each 32x32 block of pixels in the input frame
grid_32_global_work[0] /= 32;
grid_32_global_work[1] /= 32;
grid_32_h = ROUNDED_UP_DIV(input_frame->height, 32);
grid_32_w = ROUNDED_UP_DIV(input_frame->width, 32);
if (deshake_ctx->is_yuv) {
deshake_ctx->grayscale = (cl_mem)input_frame->data[0];
} else {
src = (cl_mem)input_frame->data[0];
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_grayscale,
global_work,
NULL,
&grayscale_event,
{ sizeof(cl_mem), &src },
{ sizeof(cl_mem), &deshake_ctx->grayscale }
);
}
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_harris_response,
harris_global_work,
local_work,
&harris_response_event,
{ sizeof(cl_mem), &deshake_ctx->grayscale },
{ sizeof(cl_mem), &deshake_ctx->harris_buf }
);
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_refine_features,
grid_32_global_work,
NULL,
&refine_features_event,
{ sizeof(cl_mem), &deshake_ctx->grayscale },
{ sizeof(cl_mem), &deshake_ctx->harris_buf },
{ sizeof(cl_mem), &deshake_ctx->refined_features },
{ sizeof(cl_int), &deshake_ctx->refine_features }
);
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_brief_descriptors,
grid_32_global_work,
NULL,
&brief_event,
{ sizeof(cl_mem), &deshake_ctx->grayscale },
{ sizeof(cl_mem), &deshake_ctx->refined_features },
{ sizeof(cl_mem), &deshake_ctx->descriptors },
{ sizeof(cl_mem), &deshake_ctx->brief_pattern}
);
if (!av_fifo_can_read(deshake_ctx->abs_motion.ringbuffers[RingbufX])) {
// This is the first frame we've been given to queue, meaning there is
// no previous frame to match descriptors to
goto no_motion_data;
}
CL_RUN_KERNEL_WITH_ARGS(
deshake_ctx->command_queue,
deshake_ctx->kernel_match_descriptors,
grid_32_global_work,
NULL,
&match_descriptors_event,
{ sizeof(cl_mem), &deshake_ctx->prev_refined_features },
{ sizeof(cl_mem), &deshake_ctx->refined_features },
{ sizeof(cl_mem), &deshake_ctx->descriptors },
{ sizeof(cl_mem), &deshake_ctx->prev_descriptors },
{ sizeof(cl_mem), &deshake_ctx->matches }
);
cle = clEnqueueReadBuffer(
deshake_ctx->command_queue,
deshake_ctx->matches,
CL_TRUE,
0,
grid_32_h * grid_32_w * sizeof(MotionVector),
deshake_ctx->matches_host,
0,
NULL,
&read_buf_event
);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to read matches to host: %d.\n", cle);
num_vectors = make_vectors_contig(deshake_ctx, grid_32_h, grid_32_w);
if (num_vectors < 10) {
// Not enough matches to get reliable motion data for this frame
//
// From this point on all data is relative to this frame rather than the
// original frame. We have to make sure that we don't mix values that were
// relative to the original frame with the new values relative to this
// frame when doing the gaussian smoothing. We keep track of where the old
// values end using this data_end_offset field in order to accomplish
// that goal.
//
// If no motion data is present for multiple frames in a short window of
// time, we leave the end where it was to avoid mixing 0s in with the
// old data (and just treat them all as part of the new values)
if (deshake_ctx->abs_motion.data_end_offset == -1) {
deshake_ctx->abs_motion.data_end_offset =
av_fifo_can_read(deshake_ctx->abs_motion.ringbuffers[RingbufX]) - 1;
}
goto no_motion_data;
}
if (!estimate_affine_2d(
deshake_ctx,
deshake_ctx->matches_contig_host,
&debug_matches,
num_vectors,
model.matrix,
10.0,
3000,
0.999999999999
)) {
goto no_motion_data;
}
for (int i = 0; i < num_vectors; i++) {
if (deshake_ctx->matches_contig_host[i].should_consider) {
deshake_ctx->inliers[num_inliers] = deshake_ctx->matches_contig_host[i];
num_inliers++;
}
}
if (!minimize_error(
deshake_ctx,
deshake_ctx->inliers,
&debug_matches,
num_inliers,
model.matrix,
400
)) {
goto no_motion_data;
}
relative = decompose_transform(model.matrix);
// Get the absolute transform data for the previous frame
for (int i = 0; i < RingbufCount; i++) {
av_fifo_peek(
deshake_ctx->abs_motion.ringbuffers[i],
&prev_vals[i], 1,
av_fifo_can_read(deshake_ctx->abs_motion.ringbuffers[i]) - 1);
}
new_vals[RingbufX] = prev_vals[RingbufX] + relative.translation.s[0];
new_vals[RingbufY] = prev_vals[RingbufY] + relative.translation.s[1];
new_vals[RingbufRot] = prev_vals[RingbufRot] + relative.rotation;
new_vals[RingbufScaleX] = prev_vals[RingbufScaleX] / relative.scale.s[0];
new_vals[RingbufScaleY] = prev_vals[RingbufScaleY] / relative.scale.s[1];
if (deshake_ctx->debug_on) {
if (!deshake_ctx->is_yuv) {
deshake_ctx->grayscale_time += ff_opencl_get_event_time(grayscale_event);
}
deshake_ctx->harris_response_time += ff_opencl_get_event_time(harris_response_event);
deshake_ctx->refine_features_time += ff_opencl_get_event_time(refine_features_event);
deshake_ctx->brief_descriptors_time += ff_opencl_get_event_time(brief_event);
deshake_ctx->match_descriptors_time += ff_opencl_get_event_time(match_descriptors_event);
deshake_ctx->read_buf_time += ff_opencl_get_event_time(read_buf_event);
}
goto end;
no_motion_data:
new_vals[RingbufX] = 0.0f;
new_vals[RingbufY] = 0.0f;
new_vals[RingbufRot] = 0.0f;
new_vals[RingbufScaleX] = 1.0f;
new_vals[RingbufScaleY] = 1.0f;
for (int i = 0; i < num_vectors; i++) {
deshake_ctx->matches_contig_host[i].should_consider = 0;
}
debug_matches.num_model_matches = 0;
if (deshake_ctx->debug_on) {
av_log(avctx, AV_LOG_VERBOSE,
"\n[ALERT] No motion data found in queue_frame, motion reset to 0\n\n"
);
}
goto end;
end:
// Swap the descriptor buffers (we don't need the previous frame's descriptors
// again so we will use that space for the next frame's descriptors)
temp = deshake_ctx->prev_descriptors;
deshake_ctx->prev_descriptors = deshake_ctx->descriptors;
deshake_ctx->descriptors = temp;
// Same for the refined features
temp = deshake_ctx->prev_refined_features;
deshake_ctx->prev_refined_features = deshake_ctx->refined_features;
deshake_ctx->refined_features = temp;
if (deshake_ctx->debug_on) {
if (num_vectors == 0) {
debug_matches.matches = NULL;
} else {
debug_matches.matches = av_malloc_array(num_vectors, sizeof(MotionVector));
if (!debug_matches.matches) {
err = AVERROR(ENOMEM);
goto fail;
}
}
for (int i = 0; i < num_vectors; i++) {
debug_matches.matches[i] = deshake_ctx->matches_contig_host[i];
}
debug_matches.num_matches = num_vectors;
av_fifo_write(
deshake_ctx->abs_motion.debug_matches,
&debug_matches, 1);
}
for (int i = 0; i < RingbufCount; i++) {
av_fifo_write(deshake_ctx->abs_motion.ringbuffers[i], &new_vals[i], 1);
}
return ff_framequeue_add(&deshake_ctx->fq, input_frame);
fail:
clFinish(deshake_ctx->command_queue);
av_frame_free(&input_frame);
return err;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
DeshakeOpenCLContext *deshake_ctx = ctx->priv;
AVFrame *frame = NULL;
int ret, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (!deshake_ctx->eof) {
ret = ff_inlink_consume_frame(inlink, &frame);
if (ret < 0)
return ret;
if (ret > 0) {
if (!frame->hw_frames_ctx)
return AVERROR(EINVAL);
if (!deshake_ctx->initialized) {
ret = deshake_opencl_init(ctx);
if (ret < 0)
return ret;
}
// If there is no more space in the ringbuffers, remove the oldest
// values to make room for the new ones
if (!av_fifo_can_write(deshake_ctx->abs_motion.ringbuffers[RingbufX])) {
for (int i = 0; i < RingbufCount; i++) {
av_fifo_drain2(deshake_ctx->abs_motion.ringbuffers[i], 1);
}
}
ret = queue_frame(inlink, frame);
if (ret < 0)
return ret;
if (ret >= 0) {
// See if we have enough buffered frames to process one
//
// "enough" is half the smooth window of queued frames into the future
if (ff_framequeue_queued_frames(&deshake_ctx->fq) >= deshake_ctx->smooth_window / 2) {
return filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
}
}
}
}
if (!deshake_ctx->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF) {
deshake_ctx->eof = 1;
}
}
if (deshake_ctx->eof) {
// Finish processing the rest of the frames in the queue.
while(ff_framequeue_queued_frames(&deshake_ctx->fq) != 0) {
for (int i = 0; i < RingbufCount; i++) {
av_fifo_drain2(deshake_ctx->abs_motion.ringbuffers[i], 1);
}
ret = filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
if (ret < 0) {
return ret;
}
}
if (deshake_ctx->debug_on) {
av_log(ctx, AV_LOG_VERBOSE,
"Average kernel execution times:\n"
"\t grayscale: %0.3f ms\n"
"\t harris_response: %0.3f ms\n"
"\t refine_features: %0.3f ms\n"
"\tbrief_descriptors: %0.3f ms\n"
"\tmatch_descriptors: %0.3f ms\n"
"\t transform: %0.3f ms\n"
"\t crop_upscale: %0.3f ms\n"
"Average buffer read times:\n"
"\t features buf: %0.3f ms\n",
averaged_event_time_ms(deshake_ctx->grayscale_time, deshake_ctx->curr_frame),
averaged_event_time_ms(deshake_ctx->harris_response_time, deshake_ctx->curr_frame),
averaged_event_time_ms(deshake_ctx->refine_features_time, deshake_ctx->curr_frame),
averaged_event_time_ms(deshake_ctx->brief_descriptors_time, deshake_ctx->curr_frame),
averaged_event_time_ms(deshake_ctx->match_descriptors_time, deshake_ctx->curr_frame),
averaged_event_time_ms(deshake_ctx->transform_time, deshake_ctx->curr_frame),
averaged_event_time_ms(deshake_ctx->crop_upscale_time, deshake_ctx->curr_frame),
averaged_event_time_ms(deshake_ctx->read_buf_time, deshake_ctx->curr_frame)
);
}
ff_outlink_set_status(outlink, AVERROR_EOF, deshake_ctx->duration);
return 0;
}
if (!deshake_ctx->eof) {
FF_FILTER_FORWARD_WANTED(outlink, inlink);
}
return FFERROR_NOT_READY;
}
static const AVFilterPad deshake_opencl_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = &ff_opencl_filter_config_input,
},
};
static const AVFilterPad deshake_opencl_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = &ff_opencl_filter_config_output,
},
};
#define OFFSET(x) offsetof(DeshakeOpenCLContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption deshake_opencl_options[] = {
{
"tripod", "simulates a tripod by preventing any camera movement whatsoever "
"from the original frame",
OFFSET(tripod_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
},
{
"debug", "turn on additional debugging information",
OFFSET(debug_on), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
},
{
"adaptive_crop", "attempt to subtly crop borders to reduce mirrored content",
OFFSET(should_crop), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
},
{
"refine_features", "refine feature point locations at a sub-pixel level",
OFFSET(refine_features), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
},
{
"smooth_strength", "smoothing strength (0 attempts to adaptively determine optimal strength)",
OFFSET(smooth_percent), AV_OPT_TYPE_FLOAT, {.dbl = 0.0f}, 0.0f, 1.0f, FLAGS
},
{
"smooth_window_multiplier", "multiplier for number of frames to buffer for motion data",
OFFSET(smooth_window_multiplier), AV_OPT_TYPE_FLOAT, {.dbl = 2.0}, 0.1, 10.0, FLAGS
},
{ NULL }
};
AVFILTER_DEFINE_CLASS(deshake_opencl);
const AVFilter ff_vf_deshake_opencl = {
.name = "deshake_opencl",
.description = NULL_IF_CONFIG_SMALL("Feature-point based video stabilization filter"),
.priv_size = sizeof(DeshakeOpenCLContext),
.priv_class = &deshake_opencl_class,
.init = &ff_opencl_filter_init,
.uninit = &deshake_opencl_uninit,
.activate = activate,
FILTER_INPUTS(deshake_opencl_inputs),
FILTER_OUTPUTS(deshake_opencl_outputs),
FILTER_SINGLE_PIXFMT(AV_PIX_FMT_OPENCL),
.flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
.flags = AVFILTER_FLAG_HWDEVICE,
};
|