File size: 29,292 Bytes
8ead80b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avassert.h"
#include "intmath.h"
#include "cpu.h"
#include "qsort.h"
#include "bprint.h"
#include "tx_priv.h"
#define TYPE_IS(type, x) \
(((x) == AV_TX_FLOAT_ ## type) || \
((x) == AV_TX_DOUBLE_ ## type) || \
((x) == AV_TX_INT32_ ## type))
/* Calculates the modular multiplicative inverse */
static av_always_inline int mulinv(int n, int m)
{
n = n % m;
for (int x = 1; x < m; x++)
if (((n * x) % m) == 1)
return x;
av_assert0(0); /* Never reached */
return 0;
}
int ff_tx_gen_pfa_input_map(AVTXContext *s, FFTXCodeletOptions *opts,
int d1, int d2)
{
const int sl = d1*d2;
s->map = av_malloc(s->len*sizeof(*s->map));
if (!s->map)
return AVERROR(ENOMEM);
for (int k = 0; k < s->len; k += sl) {
if (s->inv || (opts && opts->map_dir == FF_TX_MAP_SCATTER)) {
for (int m = 0; m < d2; m++)
for (int n = 0; n < d1; n++)
s->map[k + ((m*d1 + n*d2) % (sl))] = m*d1 + n;
} else {
for (int m = 0; m < d2; m++)
for (int n = 0; n < d1; n++)
s->map[k + m*d1 + n] = (m*d1 + n*d2) % (sl);
}
if (s->inv)
for (int w = 1; w <= ((sl) >> 1); w++)
FFSWAP(int, s->map[k + w], s->map[k + sl - w]);
}
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
/* Guaranteed to work for any n, m where gcd(n, m) == 1 */
int ff_tx_gen_compound_mapping(AVTXContext *s, FFTXCodeletOptions *opts,
int inv, int n, int m)
{
int *in_map, *out_map;
const int len = n*m; /* Will not be equal to s->len for MDCTs */
int m_inv, n_inv;
/* Make sure the numbers are coprime */
if (av_gcd(n, m) != 1)
return AVERROR(EINVAL);
m_inv = mulinv(m, n);
n_inv = mulinv(n, m);
if (!(s->map = av_malloc(2*len*sizeof(*s->map))))
return AVERROR(ENOMEM);
in_map = s->map;
out_map = s->map + len;
/* Ruritanian map for input, CRT map for output, can be swapped */
if (opts && opts->map_dir == FF_TX_MAP_SCATTER) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
in_map[(i*m + j*n) % len] = j*n + i;
out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
}
}
} else {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
in_map[j*n + i] = (i*m + j*n) % len;
out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
}
}
}
if (inv) {
for (int i = 0; i < m; i++) {
int *in = &in_map[i*n + 1]; /* Skip the DC */
for (int j = 0; j < ((n - 1) >> 1); j++)
FFSWAP(int, in[j], in[n - j - 2]);
}
}
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
static inline int split_radix_permutation(int i, int len, int inv)
{
len >>= 1;
if (len <= 1)
return i & 1;
if (!(i & len))
return split_radix_permutation(i, len, inv) * 2;
len >>= 1;
return split_radix_permutation(i, len, inv) * 4 + 1 - 2*(!(i & len) ^ inv);
}
int ff_tx_gen_ptwo_revtab(AVTXContext *s, FFTXCodeletOptions *opts)
{
int len = s->len;
if (!(s->map = av_malloc(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
if (opts && opts->map_dir == FF_TX_MAP_SCATTER) {
for (int i = 0; i < s->len; i++)
s->map[-split_radix_permutation(i, len, s->inv) & (len - 1)] = i;
} else {
for (int i = 0; i < s->len; i++)
s->map[i] = -split_radix_permutation(i, len, s->inv) & (len - 1);
}
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
int ff_tx_gen_inplace_map(AVTXContext *s, int len)
{
int *src_map, out_map_idx = 0;
if (!s->sub || !s->sub->map)
return AVERROR(EINVAL);
if (!(s->map = av_mallocz(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
src_map = s->sub->map;
/* The first coefficient is always already in-place */
for (int src = 1; src < s->len; src++) {
int dst = src_map[src];
int found = 0;
if (dst <= src)
continue;
/* This just checks if a closed loop has been encountered before,
* and if so, skips it, since to fully permute a loop we must only
* enter it once. */
do {
for (int j = 0; j < out_map_idx; j++) {
if (dst == s->map[j]) {
found = 1;
break;
}
}
dst = src_map[dst];
} while (dst != src && !found);
if (!found)
s->map[out_map_idx++] = src;
}
s->map[out_map_idx++] = 0;
return 0;
}
static void parity_revtab_generator(int *revtab, int n, int inv, int offset,
int is_dual, int dual_high, int len,
int basis, int dual_stride, int inv_lookup)
{
len >>= 1;
if (len <= basis) {
int k1, k2, stride, even_idx, odd_idx;
is_dual = is_dual && dual_stride;
dual_high = is_dual & dual_high;
stride = is_dual ? FFMIN(dual_stride, len) : 0;
even_idx = offset + dual_high*(stride - 2*len);
odd_idx = even_idx + len + (is_dual && !dual_high)*len + dual_high*len;
for (int i = 0; i < len; i++) {
k1 = -split_radix_permutation(offset + i*2 + 0, n, inv) & (n - 1);
k2 = -split_radix_permutation(offset + i*2 + 1, n, inv) & (n - 1);
if (inv_lookup) {
revtab[even_idx++] = k1;
revtab[odd_idx++] = k2;
} else {
revtab[k1] = even_idx++;
revtab[k2] = odd_idx++;
}
if (stride && !((i + 1) % stride)) {
even_idx += stride;
odd_idx += stride;
}
}
return;
}
parity_revtab_generator(revtab, n, inv, offset,
0, 0, len >> 0, basis, dual_stride, inv_lookup);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0),
1, 0, len >> 1, basis, dual_stride, inv_lookup);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0) + (len >> 1),
1, 1, len >> 1, basis, dual_stride, inv_lookup);
}
int ff_tx_gen_split_radix_parity_revtab(AVTXContext *s, int len, int inv,
FFTXCodeletOptions *opts,
int basis, int dual_stride)
{
basis >>= 1;
if (len < basis)
return AVERROR(EINVAL);
if (!(s->map = av_mallocz(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
av_assert0(!dual_stride || !(dual_stride & (dual_stride - 1)));
av_assert0(dual_stride <= basis);
parity_revtab_generator(s->map, len, inv, 0, 0, 0, len,
basis, dual_stride,
opts ? opts->map_dir == FF_TX_MAP_GATHER : FF_TX_MAP_GATHER);
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
static void reset_ctx(AVTXContext *s, int free_sub)
{
if (!s)
return;
if (s->sub)
for (int i = 0; i < TX_MAX_SUB; i++)
reset_ctx(&s->sub[i], free_sub + 1);
if (s->cd_self && s->cd_self->uninit)
s->cd_self->uninit(s);
if (free_sub)
av_freep(&s->sub);
av_freep(&s->map);
av_freep(&s->exp);
av_freep(&s->tmp);
/* Nothing else needs to be reset, it gets overwritten if another
* ff_tx_init_subtx() call is made. */
s->nb_sub = 0;
s->opaque = NULL;
memset(s->fn, 0, sizeof(*s->fn));
}
void ff_tx_clear_ctx(AVTXContext *s)
{
reset_ctx(s, 0);
}
av_cold void av_tx_uninit(AVTXContext **ctx)
{
if (!(*ctx))
return;
reset_ctx(*ctx, 1);
av_freep(ctx);
}
static av_cold int ff_tx_null_init(AVTXContext *s, const FFTXCodelet *cd,
uint64_t flags, FFTXCodeletOptions *opts,
int len, int inv, const void *scale)
{
/* Can only handle one sample+type to one sample+type transforms */
if (TYPE_IS(MDCT, s->type) || TYPE_IS(RDFT, s->type))
return AVERROR(EINVAL);
return 0;
}
/* Null transform when the length is 1 */
static void ff_tx_null(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride)
{
memcpy(_out, _in, stride);
}
static const FFTXCodelet ff_tx_null_def = {
.name = NULL_IF_CONFIG_SMALL("null"),
.function = ff_tx_null,
.type = TX_TYPE_ANY,
.flags = AV_TX_UNALIGNED | FF_TX_ALIGNED |
FF_TX_OUT_OF_PLACE | AV_TX_INPLACE,
.factors[0] = TX_FACTOR_ANY,
.min_len = 1,
.max_len = 1,
.init = ff_tx_null_init,
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_MAX,
};
static const FFTXCodelet * const ff_tx_null_list[] = {
&ff_tx_null_def,
NULL,
};
/* Array of all compiled codelet lists. Order is irrelevant. */
static const FFTXCodelet * const * const codelet_list[] = {
ff_tx_codelet_list_float_c,
ff_tx_codelet_list_double_c,
ff_tx_codelet_list_int32_c,
ff_tx_null_list,
#if HAVE_X86ASM
ff_tx_codelet_list_float_x86,
#endif
#if ARCH_AARCH64
ff_tx_codelet_list_float_aarch64,
#endif
};
static const int codelet_list_num = FF_ARRAY_ELEMS(codelet_list);
static const int cpu_slow_mask = AV_CPU_FLAG_SSE2SLOW | AV_CPU_FLAG_SSE3SLOW |
AV_CPU_FLAG_ATOM | AV_CPU_FLAG_SSSE3SLOW |
AV_CPU_FLAG_AVXSLOW | AV_CPU_FLAG_SLOW_GATHER;
static const int cpu_slow_penalties[][2] = {
{ AV_CPU_FLAG_SSE2SLOW, 1 + 64 },
{ AV_CPU_FLAG_SSE3SLOW, 1 + 64 },
{ AV_CPU_FLAG_SSSE3SLOW, 1 + 64 },
{ AV_CPU_FLAG_ATOM, 1 + 128 },
{ AV_CPU_FLAG_AVXSLOW, 1 + 128 },
{ AV_CPU_FLAG_SLOW_GATHER, 1 + 32 },
};
static int get_codelet_prio(const FFTXCodelet *cd, int cpu_flags, int len)
{
int prio = cd->prio;
int max_factor = 0;
/* If the CPU has a SLOW flag, and the instruction is also flagged
* as being slow for such, reduce its priority */
for (int i = 0; i < FF_ARRAY_ELEMS(cpu_slow_penalties); i++) {
if ((cpu_flags & cd->cpu_flags) & cpu_slow_penalties[i][0])
prio -= cpu_slow_penalties[i][1];
}
/* Prioritize aligned-only codelets */
if ((cd->flags & FF_TX_ALIGNED) && !(cd->flags & AV_TX_UNALIGNED))
prio += 64;
/* Codelets for specific lengths are generally faster */
if ((len == cd->min_len) && (len == cd->max_len))
prio += 64;
/* Forward-only or inverse-only transforms are generally better */
if ((cd->flags & (FF_TX_FORWARD_ONLY | FF_TX_INVERSE_ONLY)))
prio += 64;
/* Larger factors are generally better */
for (int i = 0; i < TX_MAX_SUB; i++)
max_factor = FFMAX(cd->factors[i], max_factor);
if (max_factor)
prio += 16*max_factor;
return prio;
}
typedef struct FFTXLenDecomp {
int len;
int len2;
int prio;
const FFTXCodelet *cd;
} FFTXLenDecomp;
static int cmp_decomp(FFTXLenDecomp *a, FFTXLenDecomp *b)
{
return FFDIFFSIGN(b->prio, a->prio);
}
int ff_tx_decompose_length(int dst[TX_MAX_DECOMPOSITIONS], enum AVTXType type,
int len, int inv)
{
int nb_decomp = 0;
FFTXLenDecomp ld[TX_MAX_DECOMPOSITIONS];
int codelet_list_idx = codelet_list_num;
const int cpu_flags = av_get_cpu_flags();
/* Loop through all codelets in all codelet lists to find matches
* to the requirements */
while (codelet_list_idx--) {
const FFTXCodelet * const * list = codelet_list[codelet_list_idx];
const FFTXCodelet *cd = NULL;
while ((cd = *list++)) {
int fl = len;
int skip = 0, prio;
int factors_product = 1, factors_mod = 0;
if (nb_decomp >= TX_MAX_DECOMPOSITIONS)
goto sort;
/* Check if the type matches */
if (cd->type != TX_TYPE_ANY && type != cd->type)
continue;
/* Check direction for non-orthogonal codelets */
if (((cd->flags & FF_TX_FORWARD_ONLY) && inv) ||
((cd->flags & (FF_TX_INVERSE_ONLY | AV_TX_FULL_IMDCT)) && !inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_REAL)) && inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_IMAGINARY)) && inv))
continue;
/* Check if the CPU supports the required ISA */
if (cd->cpu_flags != FF_TX_CPU_FLAGS_ALL &&
!(cpu_flags & (cd->cpu_flags & ~cpu_slow_mask)))
continue;
for (int i = 0; i < TX_MAX_FACTORS; i++) {
if (!cd->factors[i] || (fl == 1))
break;
if (cd->factors[i] == TX_FACTOR_ANY) {
factors_mod++;
factors_product *= fl;
} else if (!(fl % cd->factors[i])) {
factors_mod++;
if (cd->factors[i] == 2) {
int b = ff_ctz(fl);
fl >>= b;
factors_product <<= b;
} else {
do {
fl /= cd->factors[i];
factors_product *= cd->factors[i];
} while (!(fl % cd->factors[i]));
}
}
}
/* Disqualify if factor requirements are not satisfied or if trivial */
if ((factors_mod < cd->nb_factors) || (len == factors_product))
continue;
if (av_gcd(factors_product, fl) != 1)
continue;
/* Check if length is supported and factorization was successful */
if ((factors_product < cd->min_len) ||
(cd->max_len != TX_LEN_UNLIMITED && (factors_product > cd->max_len)))
continue;
prio = get_codelet_prio(cd, cpu_flags, factors_product) * factors_product;
/* Check for duplicates */
for (int i = 0; i < nb_decomp; i++) {
if (factors_product == ld[i].len) {
/* Update priority if new one is higher */
if (prio > ld[i].prio)
ld[i].prio = prio;
skip = 1;
break;
}
}
/* Add decomposition if unique */
if (!skip) {
ld[nb_decomp].cd = cd;
ld[nb_decomp].len = factors_product;
ld[nb_decomp].len2 = fl;
ld[nb_decomp].prio = prio;
nb_decomp++;
}
}
}
if (!nb_decomp)
return AVERROR(EINVAL);
sort:
AV_QSORT(ld, nb_decomp, FFTXLenDecomp, cmp_decomp);
for (int i = 0; i < nb_decomp; i++) {
if (ld[i].cd->nb_factors > 1)
dst[i] = ld[i].len2;
else
dst[i] = ld[i].len;
}
return nb_decomp;
}
int ff_tx_gen_default_map(AVTXContext *s, FFTXCodeletOptions *opts)
{
s->map = av_malloc(s->len*sizeof(*s->map));
if (!s->map)
return AVERROR(ENOMEM);
s->map[0] = 0; /* DC is always at the start */
if (s->inv) /* Reversing the ACs flips the transform direction */
for (int i = 1; i < s->len; i++)
s->map[i] = s->len - i;
else
for (int i = 1; i < s->len; i++)
s->map[i] = i;
s->map_dir = FF_TX_MAP_GATHER;
return 0;
}
#if !CONFIG_SMALL
static void print_flags(AVBPrint *bp, uint64_t f)
{
int prev = 0;
const char *sep = ", ";
av_bprintf(bp, "flags: [");
if ((f & FF_TX_ALIGNED) && ++prev)
av_bprintf(bp, "aligned");
if ((f & AV_TX_UNALIGNED) && ++prev)
av_bprintf(bp, "%sunaligned", prev > 1 ? sep : "");
if ((f & AV_TX_INPLACE) && ++prev)
av_bprintf(bp, "%sinplace", prev > 1 ? sep : "");
if ((f & FF_TX_OUT_OF_PLACE) && ++prev)
av_bprintf(bp, "%sout_of_place", prev > 1 ? sep : "");
if ((f & FF_TX_FORWARD_ONLY) && ++prev)
av_bprintf(bp, "%sfwd_only", prev > 1 ? sep : "");
if ((f & FF_TX_INVERSE_ONLY) && ++prev)
av_bprintf(bp, "%sinv_only", prev > 1 ? sep : "");
if ((f & FF_TX_PRESHUFFLE) && ++prev)
av_bprintf(bp, "%spreshuf", prev > 1 ? sep : "");
if ((f & AV_TX_FULL_IMDCT) && ++prev)
av_bprintf(bp, "%simdct_full", prev > 1 ? sep : "");
if ((f & AV_TX_REAL_TO_REAL) && ++prev)
av_bprintf(bp, "%sreal_to_real", prev > 1 ? sep : "");
if ((f & AV_TX_REAL_TO_IMAGINARY) && ++prev)
av_bprintf(bp, "%sreal_to_imaginary", prev > 1 ? sep : "");
if ((f & FF_TX_ASM_CALL) && ++prev)
av_bprintf(bp, "%sasm_call", prev > 1 ? sep : "");
av_bprintf(bp, "]");
}
static void print_type(AVBPrint *bp, enum AVTXType type)
{
av_bprintf(bp, "%s",
type == TX_TYPE_ANY ? "any" :
type == AV_TX_FLOAT_FFT ? "fft_float" :
type == AV_TX_FLOAT_MDCT ? "mdct_float" :
type == AV_TX_FLOAT_RDFT ? "rdft_float" :
type == AV_TX_FLOAT_DCT_I ? "dctI_float" :
type == AV_TX_FLOAT_DST_I ? "dstI_float" :
type == AV_TX_DOUBLE_FFT ? "fft_double" :
type == AV_TX_DOUBLE_MDCT ? "mdct_double" :
type == AV_TX_DOUBLE_RDFT ? "rdft_double" :
type == AV_TX_DOUBLE_DCT_I ? "dctI_double" :
type == AV_TX_DOUBLE_DST_I ? "dstI_double" :
type == AV_TX_INT32_FFT ? "fft_int32" :
type == AV_TX_INT32_MDCT ? "mdct_int32" :
type == AV_TX_INT32_RDFT ? "rdft_int32" :
type == AV_TX_INT32_DCT_I ? "dctI_int32" :
type == AV_TX_INT32_DST_I ? "dstI_int32" :
"unknown");
}
static void print_cd_info(const FFTXCodelet *cd, int prio, int len, int print_prio)
{
AVBPrint bp = { 0 };
av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&bp, "%s - type: ", cd->name);
print_type(&bp, cd->type);
av_bprintf(&bp, ", len: ");
if (!len) {
if (cd->min_len != cd->max_len)
av_bprintf(&bp, "[%i, ", cd->min_len);
if (cd->max_len == TX_LEN_UNLIMITED)
av_bprintf(&bp, "∞");
else
av_bprintf(&bp, "%i", cd->max_len);
} else {
av_bprintf(&bp, "%i", len);
}
if (cd->factors[1]) {
av_bprintf(&bp, "%s, factors", !len && cd->min_len != cd->max_len ? "]" : "");
if (!cd->nb_factors)
av_bprintf(&bp, ": [");
else
av_bprintf(&bp, "[%i]: [", cd->nb_factors);
for (int i = 0; i < TX_MAX_FACTORS; i++) {
if (i && cd->factors[i])
av_bprintf(&bp, ", ");
if (cd->factors[i] == TX_FACTOR_ANY)
av_bprintf(&bp, "any");
else if (cd->factors[i])
av_bprintf(&bp, "%i", cd->factors[i]);
else
break;
}
av_bprintf(&bp, "], ");
} else {
av_bprintf(&bp, "%s, factor: %i, ",
!len && cd->min_len != cd->max_len ? "]" : "", cd->factors[0]);
}
print_flags(&bp, cd->flags);
if (print_prio)
av_bprintf(&bp, ", prio: %i", prio);
av_log(NULL, AV_LOG_DEBUG, "%s\n", bp.str);
}
static void print_tx_structure(AVTXContext *s, int depth)
{
const FFTXCodelet *cd = s->cd_self;
for (int i = 0; i <= depth; i++)
av_log(NULL, AV_LOG_DEBUG, " ");
print_cd_info(cd, cd->prio, s->len, 0);
for (int i = 0; i < s->nb_sub; i++)
print_tx_structure(&s->sub[i], depth + 1);
}
#endif /* CONFIG_SMALL */
typedef struct TXCodeletMatch {
const FFTXCodelet *cd;
int prio;
} TXCodeletMatch;
static int cmp_matches(TXCodeletMatch *a, TXCodeletMatch *b)
{
return FFDIFFSIGN(b->prio, a->prio);
}
/* We want all factors to completely cover the length */
static inline int check_cd_factors(const FFTXCodelet *cd, int len)
{
int matches = 0, any_flag = 0;
for (int i = 0; i < TX_MAX_FACTORS; i++) {
int factor = cd->factors[i];
if (factor == TX_FACTOR_ANY) {
any_flag = 1;
matches++;
continue;
} else if (len <= 1 || !factor) {
break;
} else if (factor == 2) { /* Fast path */
int bits_2 = ff_ctz(len);
if (!bits_2)
continue; /* Factor not supported */
len >>= bits_2;
matches++;
} else {
int res = len % factor;
if (res)
continue; /* Factor not supported */
while (!res) {
len /= factor;
res = len % factor;
}
matches++;
}
}
return (cd->nb_factors <= matches) && (any_flag || len == 1);
}
av_cold int ff_tx_init_subtx(AVTXContext *s, enum AVTXType type,
uint64_t flags, FFTXCodeletOptions *opts,
int len, int inv, const void *scale)
{
int ret = 0;
AVTXContext *sub = NULL;
TXCodeletMatch *cd_tmp, *cd_matches = NULL;
unsigned int cd_matches_size = 0;
int codelet_list_idx = codelet_list_num;
int nb_cd_matches = 0;
#if !CONFIG_SMALL
AVBPrint bp = { 0 };
#endif
/* We still accept functions marked with SLOW, even if the CPU is
* marked with the same flag, but we give them lower priority. */
const int cpu_flags = av_get_cpu_flags();
/* Flags the transform wants */
uint64_t req_flags = flags;
/* Flags the codelet may require to be present */
uint64_t inv_req_mask = AV_TX_FULL_IMDCT |
AV_TX_REAL_TO_REAL |
AV_TX_REAL_TO_IMAGINARY |
FF_TX_PRESHUFFLE |
FF_TX_ASM_CALL;
/* Unaligned codelets are compatible with the aligned flag */
if (req_flags & FF_TX_ALIGNED)
req_flags |= AV_TX_UNALIGNED;
/* If either flag is set, both are okay, so don't check for an exact match */
if ((req_flags & AV_TX_INPLACE) && (req_flags & FF_TX_OUT_OF_PLACE))
req_flags &= ~(AV_TX_INPLACE | FF_TX_OUT_OF_PLACE);
if ((req_flags & FF_TX_ALIGNED) && (req_flags & AV_TX_UNALIGNED))
req_flags &= ~(FF_TX_ALIGNED | AV_TX_UNALIGNED);
/* Loop through all codelets in all codelet lists to find matches
* to the requirements */
while (codelet_list_idx--) {
const FFTXCodelet * const * list = codelet_list[codelet_list_idx];
const FFTXCodelet *cd = NULL;
while ((cd = *list++)) {
/* Check if the type matches */
if (cd->type != TX_TYPE_ANY && type != cd->type)
continue;
/* Check direction for non-orthogonal codelets */
if (((cd->flags & FF_TX_FORWARD_ONLY) && inv) ||
((cd->flags & (FF_TX_INVERSE_ONLY | AV_TX_FULL_IMDCT)) && !inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_REAL)) && inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_IMAGINARY)) && inv))
continue;
/* Check if the requested flags match from both sides */
if (((req_flags & cd->flags) != (req_flags)) ||
((inv_req_mask & cd->flags) != (req_flags & inv_req_mask)))
continue;
/* Check if length is supported */
if ((len < cd->min_len) || (cd->max_len != -1 && (len > cd->max_len)))
continue;
/* Check if the CPU supports the required ISA */
if (cd->cpu_flags != FF_TX_CPU_FLAGS_ALL &&
!(cpu_flags & (cd->cpu_flags & ~cpu_slow_mask)))
continue;
/* Check for factors */
if (!check_cd_factors(cd, len))
continue;
/* Realloc array and append */
cd_tmp = av_fast_realloc(cd_matches, &cd_matches_size,
sizeof(*cd_tmp) * (nb_cd_matches + 1));
if (!cd_tmp) {
av_free(cd_matches);
return AVERROR(ENOMEM);
}
cd_matches = cd_tmp;
cd_matches[nb_cd_matches].cd = cd;
cd_matches[nb_cd_matches].prio = get_codelet_prio(cd, cpu_flags, len);
nb_cd_matches++;
}
}
#if !CONFIG_SMALL
/* Print debugging info */
av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&bp, "For transform of length %i, %s, ", len,
inv ? "inverse" : "forward");
print_type(&bp, type);
av_bprintf(&bp, ", ");
print_flags(&bp, flags);
av_bprintf(&bp, ", found %i matches%s", nb_cd_matches,
nb_cd_matches ? ":" : ".");
#endif
/* No matches found */
if (!nb_cd_matches)
return AVERROR(ENOSYS);
/* Sort the list */
AV_QSORT(cd_matches, nb_cd_matches, TXCodeletMatch, cmp_matches);
#if !CONFIG_SMALL
av_log(NULL, AV_LOG_DEBUG, "%s\n", bp.str);
for (int i = 0; i < nb_cd_matches; i++) {
av_log(NULL, AV_LOG_DEBUG, " %i: ", i + 1);
print_cd_info(cd_matches[i].cd, cd_matches[i].prio, 0, 1);
}
#endif
if (!s->sub) {
s->sub = sub = av_mallocz(TX_MAX_SUB*sizeof(*sub));
if (!sub) {
ret = AVERROR(ENOMEM);
goto end;
}
}
/* Attempt to initialize each */
for (int i = 0; i < nb_cd_matches; i++) {
const FFTXCodelet *cd = cd_matches[i].cd;
AVTXContext *sctx = &s->sub[s->nb_sub];
sctx->len = len;
sctx->inv = inv;
sctx->type = type;
sctx->flags = cd->flags | flags;
sctx->cd_self = cd;
s->fn[s->nb_sub] = cd->function;
s->cd[s->nb_sub] = cd;
ret = 0;
if (cd->init)
ret = cd->init(sctx, cd, flags, opts, len, inv, scale);
if (ret >= 0) {
if (opts && opts->map_dir != FF_TX_MAP_NONE &&
sctx->map_dir == FF_TX_MAP_NONE) {
/* If a specific map direction was requested, and it doesn't
* exist, create one.*/
sctx->map = av_malloc(len*sizeof(*sctx->map));
if (!sctx->map) {
ret = AVERROR(ENOMEM);
goto end;
}
for (int i = 0; i < len; i++)
sctx->map[i] = i;
} else if (opts && (opts->map_dir != sctx->map_dir)) {
int *tmp = av_malloc(len*sizeof(*sctx->map));
if (!tmp) {
ret = AVERROR(ENOMEM);
goto end;
}
memcpy(tmp, sctx->map, len*sizeof(*sctx->map));
for (int i = 0; i < len; i++)
sctx->map[tmp[i]] = i;
av_free(tmp);
}
s->nb_sub++;
goto end;
}
s->fn[s->nb_sub] = NULL;
s->cd[s->nb_sub] = NULL;
reset_ctx(sctx, 0);
if (ret == AVERROR(ENOMEM))
break;
}
if (!s->nb_sub)
av_freep(&s->sub);
end:
av_free(cd_matches);
return ret;
}
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
int inv, int len, const void *scale, uint64_t flags)
{
int ret;
AVTXContext tmp = { 0 };
const double default_scale_d = 1.0;
const float default_scale_f = 1.0f;
if (!len || type >= AV_TX_NB || !ctx || !tx)
return AVERROR(EINVAL);
if (!(flags & AV_TX_UNALIGNED))
flags |= FF_TX_ALIGNED;
if (!(flags & AV_TX_INPLACE))
flags |= FF_TX_OUT_OF_PLACE;
if (!scale && ((type == AV_TX_FLOAT_MDCT) || (type == AV_TX_INT32_MDCT)))
scale = &default_scale_f;
else if (!scale && (type == AV_TX_DOUBLE_MDCT))
scale = &default_scale_d;
ret = ff_tx_init_subtx(&tmp, type, flags, NULL, len, inv, scale);
if (ret < 0)
return ret;
*ctx = &tmp.sub[0];
*tx = tmp.fn[0];
#if !CONFIG_SMALL
av_log(NULL, AV_LOG_DEBUG, "Transform tree:\n");
print_tx_structure(*ctx, 0);
#endif
return ret;
}
|