|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef AVCODEC_AACCODER_TWOLOOP_H |
|
#define AVCODEC_AACCODER_TWOLOOP_H |
|
|
|
#include <float.h> |
|
#include "libavutil/mathematics.h" |
|
#include "mathops.h" |
|
#include "avcodec.h" |
|
#include "put_bits.h" |
|
#include "aac.h" |
|
#include "aacenc.h" |
|
#include "aactab.h" |
|
#include "aacenctab.h" |
|
|
|
|
|
#define NOISE_LOW_LIMIT 4000 |
|
|
|
#define sclip(x) av_clip(x,60,218) |
|
|
|
|
|
static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g) |
|
{ |
|
return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5; |
|
} |
|
|
|
|
|
|
|
|
|
static void search_for_quantizers_twoloop(AVCodecContext *avctx, |
|
AACEncContext *s, |
|
SingleChannelElement *sce, |
|
const float lambda) |
|
{ |
|
int start = 0, i, w, w2, g, recomprd; |
|
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate |
|
/ ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels) |
|
* (lambda / 120.f); |
|
int refbits = destbits; |
|
int toomanybits, toofewbits; |
|
char nzs[128]; |
|
uint8_t nextband[128]; |
|
int maxsf[128], minsf[128]; |
|
float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128]; |
|
float maxvals[128], spread_thr_r[128]; |
|
float min_spread_thr_r, max_spread_thr_r; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f); |
|
const float nzslope = 1.5f; |
|
float rdmin = 0.03125f; |
|
float rdmax = 1.0f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10); |
|
|
|
int fflag, minscaler, maxscaler, nminscaler; |
|
int its = 0; |
|
int maxits = 30; |
|
int allz = 0; |
|
int tbits; |
|
int cutoff = 1024; |
|
int pns_start_pos; |
|
int prev; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float zeroscale; |
|
if (lambda > 120.f) { |
|
zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f); |
|
} else { |
|
zeroscale = 1.f; |
|
} |
|
|
|
if (s->psy.bitres.alloc >= 0) { |
|
|
|
|
|
|
|
|
|
destbits = s->psy.bitres.alloc |
|
* (lambda / (avctx->global_quality ? avctx->global_quality : 120)); |
|
} |
|
|
|
if (avctx->flags & AV_CODEC_FLAG_QSCALE) { |
|
|
|
|
|
|
|
|
|
|
|
if (s->options.mid_side && s->cur_type == TYPE_CPE) |
|
destbits *= 2; |
|
|
|
|
|
|
|
|
|
|
|
toomanybits = 5800; |
|
toofewbits = destbits / 16; |
|
|
|
|
|
sfoffs = sce->ics.num_windows - 1; |
|
rdlambda = sqrtf(rdlambda); |
|
|
|
|
|
maxits *= 2; |
|
} else { |
|
|
|
|
|
|
|
|
|
|
|
toomanybits = destbits + destbits/8; |
|
toofewbits = destbits - destbits/8; |
|
|
|
sfoffs = 0; |
|
rdlambda = sqrtf(rdlambda); |
|
} |
|
|
|
|
|
{ |
|
int wlen = 1024 / sce->ics.num_windows; |
|
int bandwidth; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float rate_bandwidth_multiplier = 1.5f; |
|
int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE) |
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) |
|
: (avctx->bit_rate / avctx->ch_layout.nb_channels); |
|
|
|
|
|
if (s->options.pns || s->options.intensity_stereo) |
|
frame_bit_rate *= 1.15f; |
|
|
|
if (avctx->cutoff > 0) { |
|
bandwidth = avctx->cutoff; |
|
} else { |
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); |
|
s->psy.cutoff = bandwidth; |
|
} |
|
|
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; |
|
pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
destbits = FFMIN(destbits, 5800); |
|
toomanybits = FFMIN(toomanybits, 5800); |
|
toofewbits = FFMIN(toofewbits, 5800); |
|
|
|
|
|
|
|
|
|
min_spread_thr_r = -1; |
|
max_spread_thr_r = -1; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { |
|
int nz = 0; |
|
float uplim = 0.0f, energy = 0.0f, spread = 0.0f; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) { |
|
sce->zeroes[(w+w2)*16+g] = 1; |
|
continue; |
|
} |
|
nz = 1; |
|
} |
|
if (!nz) { |
|
uplim = 0.0f; |
|
} else { |
|
nz = 0; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) |
|
continue; |
|
uplim += band->threshold; |
|
energy += band->energy; |
|
spread += band->spread; |
|
nz++; |
|
} |
|
} |
|
uplims[w*16+g] = uplim; |
|
energies[w*16+g] = energy; |
|
nzs[w*16+g] = nz; |
|
sce->zeroes[w*16+g] = !nz; |
|
allz |= nz; |
|
if (nz && sce->can_pns[w*16+g]) { |
|
spread_thr_r[w*16+g] = energy * nz / (uplim * spread); |
|
if (min_spread_thr_r < 0) { |
|
min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g]; |
|
} else { |
|
min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]); |
|
max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
minscaler = 65535; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (sce->zeroes[w*16+g]) { |
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS; |
|
continue; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
sce->sf_idx[w*16+g] = av_clip( |
|
SCALE_ONE_POS |
|
+ 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g]) |
|
+ sfoffs, |
|
60, SCALE_MAX_POS); |
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); |
|
} |
|
} |
|
|
|
|
|
minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) |
|
for (g = 0; g < sce->ics.num_swb; g++) |
|
if (!sce->zeroes[w*16+g]) |
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1); |
|
|
|
if (!allz) |
|
return; |
|
s->abs_pow34(s->scoefs, sce->coeffs, 1024); |
|
ff_quantize_band_cost_cache_init(s); |
|
|
|
for (i = 0; i < sizeof(minsf) / sizeof(minsf[0]); ++i) |
|
minsf[i] = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *scaled = s->scoefs + start; |
|
int minsfidx; |
|
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); |
|
if (maxvals[w*16+g] > 0) { |
|
minsfidx = coef2minsf(maxvals[w*16+g]); |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) |
|
minsf[(w+w2)*16+g] = minsfidx; |
|
} |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
memcpy(euplims, uplims, sizeof(euplims)); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
|
|
float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f; |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (nzs[g] > 0) { |
|
float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f)); |
|
float energy2uplim = find_form_factor( |
|
sce->ics.group_len[w], sce->ics.swb_sizes[g], |
|
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]), |
|
sce->coeffs + start, |
|
nzslope * cleanup_factor); |
|
energy2uplim *= de_psy_factor; |
|
if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) { |
|
|
|
energy2uplim = sqrtf(energy2uplim); |
|
} |
|
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim)); |
|
uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax) |
|
* sce->ics.group_len[w]; |
|
|
|
energy2uplim = find_form_factor( |
|
sce->ics.group_len[w], sce->ics.swb_sizes[g], |
|
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]), |
|
sce->coeffs + start, |
|
2.0f); |
|
energy2uplim *= de_psy_factor; |
|
if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) { |
|
|
|
energy2uplim = sqrtf(energy2uplim); |
|
} |
|
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim)); |
|
euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w], |
|
0.5f, 1.0f); |
|
} |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
|
|
for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i) |
|
maxsf[i] = SCALE_MAX_POS; |
|
|
|
|
|
|
|
do { |
|
|
|
int overdist; |
|
int qstep = its ? 1 : 32; |
|
do { |
|
int changed = 0; |
|
prev = -1; |
|
recomprd = 0; |
|
tbits = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *coefs = &sce->coeffs[start]; |
|
const float *scaled = &s->scoefs[start]; |
|
int bits = 0; |
|
int cb; |
|
float dist = 0.0f; |
|
float qenergy = 0.0f; |
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { |
|
start += sce->ics.swb_sizes[g]; |
|
if (sce->can_pns[w*16+g]) { |
|
|
|
tbits += ff_pns_bits(sce, w, g); |
|
} |
|
continue; |
|
} |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g], |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
dists[w*16+g] = dist - bits; |
|
qenergies[w*16+g] = qenergy; |
|
if (prev != -1) { |
|
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF); |
|
bits += ff_aac_scalefactor_bits[sfdiff]; |
|
} |
|
tbits += bits; |
|
start += sce->ics.swb_sizes[g]; |
|
prev = sce->sf_idx[w*16+g]; |
|
} |
|
} |
|
if (tbits > toomanybits) { |
|
recomprd = 1; |
|
for (i = 0; i < 128; i++) { |
|
if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) { |
|
int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i]; |
|
int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep); |
|
if (new_sf != sce->sf_idx[i]) { |
|
sce->sf_idx[i] = new_sf; |
|
changed = 1; |
|
} |
|
} |
|
} |
|
} else if (tbits < toofewbits) { |
|
recomprd = 1; |
|
for (i = 0; i < 128; i++) { |
|
if (sce->sf_idx[i] > SCALE_ONE_POS) { |
|
int new_sf = FFMAX3(minsf[i], SCALE_ONE_POS, sce->sf_idx[i] - qstep); |
|
if (new_sf != sce->sf_idx[i]) { |
|
sce->sf_idx[i] = new_sf; |
|
changed = 1; |
|
} |
|
} |
|
} |
|
} |
|
qstep >>= 1; |
|
if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed) |
|
qstep = 1; |
|
} while (qstep); |
|
|
|
overdist = 1; |
|
fflag = tbits < toofewbits; |
|
for (i = 0; i < 2 && (overdist || recomprd); ++i) { |
|
if (recomprd) { |
|
|
|
prev = -1; |
|
tbits = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *coefs = sce->coeffs + start; |
|
const float *scaled = s->scoefs + start; |
|
int bits = 0; |
|
int cb; |
|
float dist = 0.0f; |
|
float qenergy = 0.0f; |
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { |
|
start += sce->ics.swb_sizes[g]; |
|
if (sce->can_pns[w*16+g]) { |
|
|
|
tbits += ff_pns_bits(sce, w, g); |
|
} |
|
continue; |
|
} |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g], |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
dists[w*16+g] = dist - bits; |
|
qenergies[w*16+g] = qenergy; |
|
if (prev != -1) { |
|
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF); |
|
bits += ff_aac_scalefactor_bits[sfdiff]; |
|
} |
|
tbits += bits; |
|
start += sce->ics.swb_sizes[g]; |
|
prev = sce->sf_idx[w*16+g]; |
|
} |
|
} |
|
} |
|
if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) { |
|
float maxoverdist = 0.0f; |
|
float ovrfactor = 1.f+(maxits-its)*16.f/maxits; |
|
overdist = recomprd = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { |
|
if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) { |
|
float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]); |
|
maxoverdist = FFMAX(maxoverdist, ovrdist); |
|
overdist++; |
|
} |
|
} |
|
} |
|
if (overdist) { |
|
|
|
|
|
|
|
float minspread = max_spread_thr_r; |
|
float maxspread = min_spread_thr_r; |
|
float zspread; |
|
int zeroable = 0; |
|
int zeroed = 0; |
|
int maxzeroed, zloop; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { |
|
if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) { |
|
minspread = FFMIN(minspread, spread_thr_r[w*16+g]); |
|
maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]); |
|
zeroable++; |
|
} |
|
} |
|
} |
|
zspread = (maxspread-minspread) * 0.0125f + minspread; |
|
|
|
|
|
|
|
|
|
|
|
zspread = FFMIN3(min_spread_thr_r * 8.f, zspread, |
|
((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1)); |
|
maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits))); |
|
for (zloop = 0; zloop < 2; zloop++) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
float loopovrfactor = (zloop) ? 1.0f : ovrfactor; |
|
int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS; |
|
int mcb; |
|
for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) { |
|
if (sce->ics.swb_offset[g] < pns_start_pos) |
|
continue; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread |
|
&& sce->sf_idx[w*16+g] > loopminsf |
|
&& (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g])) |
|
|| (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) { |
|
sce->zeroes[w*16+g] = 1; |
|
sce->band_type[w*16+g] = 0; |
|
zeroed++; |
|
} |
|
} |
|
} |
|
} |
|
if (zeroed) |
|
recomprd = fflag = 1; |
|
} else { |
|
overdist = 0; |
|
} |
|
} |
|
} |
|
|
|
minscaler = SCALE_MAX_POS; |
|
maxscaler = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (!sce->zeroes[w*16+g]) { |
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); |
|
maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]); |
|
} |
|
} |
|
} |
|
|
|
minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512); |
|
prev = -1; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
|
|
int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10; |
|
int edepth = depth+2; |
|
float uplmax = its / (maxits*0.25f) + 1.0f; |
|
uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f; |
|
start = w * 128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
int prevsc = sce->sf_idx[w*16+g]; |
|
if (prev < 0 && !sce->zeroes[w*16+g]) |
|
prev = sce->sf_idx[0]; |
|
if (!sce->zeroes[w*16+g]) { |
|
const float *coefs = sce->coeffs + start; |
|
const float *scaled = s->scoefs + start; |
|
int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF); |
|
int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF); |
|
if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > FFMAX(mindeltasf, minsf[w*16+g])) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) { |
|
int cb, bits; |
|
float dist, qenergy; |
|
int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1); |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
dist = qenergy = 0.f; |
|
bits = 0; |
|
if (!cb) { |
|
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]); |
|
} else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) { |
|
break; |
|
} |
|
|
|
|
|
|
|
|
|
if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g]) |
|
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]); |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g]-1, |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
sce->sf_idx[w*16+g]--; |
|
dists[w*16+g] = dist - bits; |
|
qenergies[w*16+g] = qenergy; |
|
if (mb && (sce->sf_idx[w*16+g] < mindeltasf || ( |
|
(dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g])) |
|
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) |
|
) )) { |
|
break; |
|
} |
|
} |
|
} else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g]) |
|
&& (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g])) |
|
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) |
|
) { |
|
|
|
for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) { |
|
int cb, bits; |
|
float dist, qenergy; |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1); |
|
if (cb > 0) { |
|
dist = qenergy = 0.f; |
|
bits = 0; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g]+1, |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
dist -= bits; |
|
if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) { |
|
sce->sf_idx[w*16+g]++; |
|
dists[w*16+g] = dist; |
|
qenergies[w*16+g] = qenergy; |
|
} else { |
|
break; |
|
} |
|
} else { |
|
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]); |
|
break; |
|
} |
|
} |
|
} |
|
prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf); |
|
if (sce->sf_idx[w*16+g] != prevsc) |
|
fflag = 1; |
|
nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]); |
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
} |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
|
|
|
|
prev = -1; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (!sce->zeroes[w*16+g]) { |
|
int prevsf = sce->sf_idx[w*16+g]; |
|
if (prev < 0) |
|
prev = prevsf; |
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF); |
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
prev = sce->sf_idx[w*16+g]; |
|
if (!fflag && prevsf != sce->sf_idx[w*16+g]) |
|
fflag = 1; |
|
} |
|
} |
|
} |
|
|
|
its++; |
|
} while (fflag && its < maxits); |
|
|
|
|
|
ff_init_nextband_map(sce, nextband); |
|
|
|
prev = -1; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
|
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (!sce->zeroes[w*16+g]) { |
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
if (sce->band_type[w*16+g] <= 0) { |
|
if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) { |
|
|
|
sce->band_type[w*16+g] = 1; |
|
} else { |
|
sce->zeroes[w*16+g] = 1; |
|
sce->band_type[w*16+g] = 0; |
|
} |
|
} |
|
} else { |
|
sce->band_type[w*16+g] = 0; |
|
} |
|
|
|
if (!sce->zeroes[w*16+g]) { |
|
if (prev != -1) { |
|
av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO; |
|
av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF); |
|
} else if (sce->zeroes[0]) { |
|
|
|
sce->sf_idx[0] = sce->sf_idx[w*16+g]; |
|
} |
|
prev = sce->sf_idx[w*16+g]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#endif |
|
|