|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/opt.h" |
|
#include "avfilter.h" |
|
#include "audio.h" |
|
|
|
#define MAX_OVERSAMPLE 64 |
|
|
|
enum ASoftClipTypes { |
|
ASC_HARD = -1, |
|
ASC_TANH, |
|
ASC_ATAN, |
|
ASC_CUBIC, |
|
ASC_EXP, |
|
ASC_ALG, |
|
ASC_QUINTIC, |
|
ASC_SIN, |
|
ASC_ERF, |
|
NB_TYPES, |
|
}; |
|
|
|
typedef struct Lowpass { |
|
float fb0, fb1, fb2; |
|
float fa0, fa1, fa2; |
|
|
|
double db0, db1, db2; |
|
double da0, da1, da2; |
|
} Lowpass; |
|
|
|
typedef struct ASoftClipContext { |
|
const AVClass *class; |
|
|
|
int type; |
|
int oversample; |
|
int64_t delay; |
|
double threshold; |
|
double output; |
|
double param; |
|
|
|
Lowpass lowpass[MAX_OVERSAMPLE]; |
|
AVFrame *frame[2]; |
|
|
|
void (*filter)(struct ASoftClipContext *s, void **dst, const void **src, |
|
int nb_samples, int channels, int start, int end); |
|
} ASoftClipContext; |
|
|
|
#define OFFSET(x) offsetof(ASoftClipContext, x) |
|
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
|
|
|
static const AVOption asoftclip_options[] = { |
|
{ "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT, {.i64=0}, -1, NB_TYPES-1, A, "types" }, |
|
{ "hard", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_HARD}, 0, 0, A, "types" }, |
|
{ "tanh", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_TANH}, 0, 0, A, "types" }, |
|
{ "atan", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ATAN}, 0, 0, A, "types" }, |
|
{ "cubic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_CUBIC}, 0, 0, A, "types" }, |
|
{ "exp", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_EXP}, 0, 0, A, "types" }, |
|
{ "alg", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ALG}, 0, 0, A, "types" }, |
|
{ "quintic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_QUINTIC},0, 0, A, "types" }, |
|
{ "sin", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_SIN}, 0, 0, A, "types" }, |
|
{ "erf", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ERF}, 0, 0, A, "types" }, |
|
{ "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A }, |
|
{ "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A }, |
|
{ "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01, 3, A }, |
|
{ "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, MAX_OVERSAMPLE, A }, |
|
{ NULL } |
|
}; |
|
|
|
AVFILTER_DEFINE_CLASS(asoftclip); |
|
|
|
static void get_lowpass(Lowpass *s, |
|
double frequency, |
|
double sample_rate) |
|
{ |
|
double w0 = 2 * M_PI * frequency / sample_rate; |
|
double alpha = sin(w0) / (2 * 0.8); |
|
double factor; |
|
|
|
s->da0 = 1 + alpha; |
|
s->da1 = -2 * cos(w0); |
|
s->da2 = 1 - alpha; |
|
s->db0 = (1 - cos(w0)) / 2; |
|
s->db1 = 1 - cos(w0); |
|
s->db2 = (1 - cos(w0)) / 2; |
|
|
|
s->da1 /= s->da0; |
|
s->da2 /= s->da0; |
|
s->db0 /= s->da0; |
|
s->db1 /= s->da0; |
|
s->db2 /= s->da0; |
|
s->da0 /= s->da0; |
|
|
|
factor = (s->da0 + s->da1 + s->da2) / (s->db0 + s->db1 + s->db2); |
|
s->db0 *= factor; |
|
s->db1 *= factor; |
|
s->db2 *= factor; |
|
|
|
s->fa0 = s->da0; |
|
s->fa1 = s->da1; |
|
s->fa2 = s->da2; |
|
s->fb0 = s->db0; |
|
s->fb1 = s->db1; |
|
s->fb2 = s->db2; |
|
} |
|
|
|
static inline float run_lowpassf(const Lowpass *const s, |
|
float src, float *w) |
|
{ |
|
float dst; |
|
|
|
dst = src * s->fb0 + w[0]; |
|
w[0] = s->fb1 * src + w[1] - s->fa1 * dst; |
|
w[1] = s->fb2 * src - s->fa2 * dst; |
|
|
|
return dst; |
|
} |
|
|
|
static void filter_flt(ASoftClipContext *s, |
|
void **dptr, const void **sptr, |
|
int nb_samples, int channels, |
|
int start, int end) |
|
{ |
|
const int oversample = s->oversample; |
|
const int nb_osamples = nb_samples * oversample; |
|
const float scale = oversample > 1 ? oversample * 0.5f : 1.f; |
|
float threshold = s->threshold; |
|
float gain = s->output * threshold; |
|
float factor = 1.f / threshold; |
|
float param = s->param; |
|
|
|
for (int c = start; c < end; c++) { |
|
float *w = (float *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1); |
|
const float *src = sptr[c]; |
|
float *dst = dptr[c]; |
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
dst[oversample * n] = src[n]; |
|
|
|
for (int m = 1; m < oversample; m++) |
|
dst[oversample * n + m] = 0.f; |
|
} |
|
|
|
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
|
dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w); |
|
|
|
switch (s->type) { |
|
case ASC_HARD: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = av_clipf(dst[n] * factor, -1.f, 1.f); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_TANH: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = tanhf(dst[n] * factor * param); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_ATAN: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = 2.f / M_PI * atanf(dst[n] * factor * param); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_CUBIC: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
float sample = dst[n] * factor; |
|
|
|
if (FFABS(sample) >= 1.5f) |
|
dst[n] = FFSIGN(sample); |
|
else |
|
dst[n] = sample - 0.1481f * powf(sample, 3.f); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_EXP: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = 2.f / (1.f + expf(-2.f * dst[n] * factor)) - 1.; |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_ALG: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
float sample = dst[n] * factor; |
|
|
|
dst[n] = sample / (sqrtf(param + sample * sample)); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_QUINTIC: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
float sample = dst[n] * factor; |
|
|
|
if (FFABS(sample) >= 1.25) |
|
dst[n] = FFSIGN(sample); |
|
else |
|
dst[n] = sample - 0.08192f * powf(sample, 5.f); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_SIN: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
float sample = dst[n] * factor; |
|
|
|
if (FFABS(sample) >= M_PI_2) |
|
dst[n] = FFSIGN(sample); |
|
else |
|
dst[n] = sinf(sample); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_ERF: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = erff(dst[n] * factor); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
default: |
|
av_assert0(0); |
|
} |
|
|
|
w = (float *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1); |
|
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
|
dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w); |
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
dst[n] = dst[n * oversample] * scale; |
|
} |
|
} |
|
|
|
static inline double run_lowpassd(const Lowpass *const s, |
|
double src, double *w) |
|
{ |
|
double dst; |
|
|
|
dst = src * s->db0 + w[0]; |
|
w[0] = s->db1 * src + w[1] - s->da1 * dst; |
|
w[1] = s->db2 * src - s->da2 * dst; |
|
|
|
return dst; |
|
} |
|
|
|
static void filter_dbl(ASoftClipContext *s, |
|
void **dptr, const void **sptr, |
|
int nb_samples, int channels, |
|
int start, int end) |
|
{ |
|
const int oversample = s->oversample; |
|
const int nb_osamples = nb_samples * oversample; |
|
const double scale = oversample > 1 ? oversample * 0.5 : 1.; |
|
double threshold = s->threshold; |
|
double gain = s->output * threshold; |
|
double factor = 1. / threshold; |
|
double param = s->param; |
|
|
|
for (int c = start; c < end; c++) { |
|
double *w = (double *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1); |
|
const double *src = sptr[c]; |
|
double *dst = dptr[c]; |
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
dst[oversample * n] = src[n]; |
|
|
|
for (int m = 1; m < oversample; m++) |
|
dst[oversample * n + m] = 0.f; |
|
} |
|
|
|
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
|
dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w); |
|
|
|
switch (s->type) { |
|
case ASC_HARD: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = av_clipd(dst[n] * factor, -1., 1.); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_TANH: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = tanh(dst[n] * factor * param); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_ATAN: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = 2. / M_PI * atan(dst[n] * factor * param); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_CUBIC: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
double sample = dst[n] * factor; |
|
|
|
if (FFABS(sample) >= 1.5) |
|
dst[n] = FFSIGN(sample); |
|
else |
|
dst[n] = sample - 0.1481 * pow(sample, 3.); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_EXP: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = 2. / (1. + exp(-2. * dst[n] * factor)) - 1.; |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_ALG: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
double sample = dst[n] * factor; |
|
|
|
dst[n] = sample / (sqrt(param + sample * sample)); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_QUINTIC: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
double sample = dst[n] * factor; |
|
|
|
if (FFABS(sample) >= 1.25) |
|
dst[n] = FFSIGN(sample); |
|
else |
|
dst[n] = sample - 0.08192 * pow(sample, 5.); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_SIN: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
double sample = dst[n] * factor; |
|
|
|
if (FFABS(sample) >= M_PI_2) |
|
dst[n] = FFSIGN(sample); |
|
else |
|
dst[n] = sin(sample); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
case ASC_ERF: |
|
for (int n = 0; n < nb_osamples; n++) { |
|
dst[n] = erf(dst[n] * factor); |
|
dst[n] *= gain; |
|
} |
|
break; |
|
default: |
|
av_assert0(0); |
|
} |
|
|
|
w = (double *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1); |
|
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
|
dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w); |
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
dst[n] = dst[n * oversample] * scale; |
|
} |
|
} |
|
|
|
static int config_input(AVFilterLink *inlink) |
|
{ |
|
AVFilterContext *ctx = inlink->dst; |
|
ASoftClipContext *s = ctx->priv; |
|
|
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break; |
|
case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break; |
|
default: av_assert0(0); |
|
} |
|
|
|
s->frame[0] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE); |
|
s->frame[1] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE); |
|
if (!s->frame[0] || !s->frame[1]) |
|
return AVERROR(ENOMEM); |
|
|
|
for (int i = 0; i < MAX_OVERSAMPLE; i++) { |
|
get_lowpass(&s->lowpass[i], inlink->sample_rate / 2, inlink->sample_rate * (i + 1)); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
typedef struct ThreadData { |
|
AVFrame *in, *out; |
|
int nb_samples; |
|
int channels; |
|
} ThreadData; |
|
|
|
static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
{ |
|
ASoftClipContext *s = ctx->priv; |
|
ThreadData *td = arg; |
|
AVFrame *out = td->out; |
|
AVFrame *in = td->in; |
|
const int channels = td->channels; |
|
const int nb_samples = td->nb_samples; |
|
const int start = (channels * jobnr) / nb_jobs; |
|
const int end = (channels * (jobnr+1)) / nb_jobs; |
|
|
|
s->filter(s, (void **)out->extended_data, (const void **)in->extended_data, |
|
nb_samples, channels, start, end); |
|
|
|
return 0; |
|
} |
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
|
{ |
|
AVFilterContext *ctx = inlink->dst; |
|
ASoftClipContext *s = ctx->priv; |
|
AVFilterLink *outlink = ctx->outputs[0]; |
|
int nb_samples, channels; |
|
ThreadData td; |
|
AVFrame *out; |
|
|
|
if (av_frame_is_writable(in) && s->oversample == 1) { |
|
out = in; |
|
} else { |
|
out = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample); |
|
if (!out) { |
|
av_frame_free(&in); |
|
return AVERROR(ENOMEM); |
|
} |
|
av_frame_copy_props(out, in); |
|
} |
|
|
|
nb_samples = in->nb_samples; |
|
channels = in->ch_layout.nb_channels; |
|
|
|
td.in = in; |
|
td.out = out; |
|
td.nb_samples = nb_samples; |
|
td.channels = channels; |
|
ff_filter_execute(ctx, filter_channels, &td, NULL, |
|
FFMIN(channels, ff_filter_get_nb_threads(ctx))); |
|
|
|
if (out != in) |
|
av_frame_free(&in); |
|
|
|
out->nb_samples /= s->oversample; |
|
return ff_filter_frame(outlink, out); |
|
} |
|
|
|
static av_cold void uninit(AVFilterContext *ctx) |
|
{ |
|
ASoftClipContext *s = ctx->priv; |
|
|
|
av_frame_free(&s->frame[0]); |
|
av_frame_free(&s->frame[1]); |
|
} |
|
|
|
static const AVFilterPad inputs[] = { |
|
{ |
|
.name = "default", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.filter_frame = filter_frame, |
|
.config_props = config_input, |
|
}, |
|
}; |
|
|
|
const AVFilter ff_af_asoftclip = { |
|
.name = "asoftclip", |
|
.description = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."), |
|
.priv_size = sizeof(ASoftClipContext), |
|
.priv_class = &asoftclip_class, |
|
FILTER_INPUTS(inputs), |
|
FILTER_OUTPUTS(ff_audio_default_filterpad), |
|
FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP), |
|
.uninit = uninit, |
|
.process_command = ff_filter_process_command, |
|
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | |
|
AVFILTER_FLAG_SLICE_THREADS, |
|
}; |
|
|