|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <float.h> |
|
#include <math.h> |
|
|
|
#include "libavutil/opt.h" |
|
#include "audio.h" |
|
#include "avfilter.h" |
|
#include "internal.h" |
|
|
|
#define HISTOGRAM_SIZE 8192 |
|
#define HISTOGRAM_MAX (HISTOGRAM_SIZE-1) |
|
|
|
#define MEASURE_ALL UINT_MAX |
|
#define MEASURE_NONE 0 |
|
|
|
#define MEASURE_DC_OFFSET (1 << 0) |
|
#define MEASURE_MIN_LEVEL (1 << 1) |
|
#define MEASURE_MAX_LEVEL (1 << 2) |
|
#define MEASURE_MIN_DIFFERENCE (1 << 3) |
|
#define MEASURE_MAX_DIFFERENCE (1 << 4) |
|
#define MEASURE_MEAN_DIFFERENCE (1 << 5) |
|
#define MEASURE_RMS_DIFFERENCE (1 << 6) |
|
#define MEASURE_PEAK_LEVEL (1 << 7) |
|
#define MEASURE_RMS_LEVEL (1 << 8) |
|
#define MEASURE_RMS_PEAK (1 << 9) |
|
#define MEASURE_RMS_TROUGH (1 << 10) |
|
#define MEASURE_CREST_FACTOR (1 << 11) |
|
#define MEASURE_FLAT_FACTOR (1 << 12) |
|
#define MEASURE_PEAK_COUNT (1 << 13) |
|
#define MEASURE_BIT_DEPTH (1 << 14) |
|
#define MEASURE_DYNAMIC_RANGE (1 << 15) |
|
#define MEASURE_ZERO_CROSSINGS (1 << 16) |
|
#define MEASURE_ZERO_CROSSINGS_RATE (1 << 17) |
|
#define MEASURE_NUMBER_OF_SAMPLES (1 << 18) |
|
#define MEASURE_NUMBER_OF_NANS (1 << 19) |
|
#define MEASURE_NUMBER_OF_INFS (1 << 20) |
|
#define MEASURE_NUMBER_OF_DENORMALS (1 << 21) |
|
#define MEASURE_NOISE_FLOOR (1 << 22) |
|
#define MEASURE_NOISE_FLOOR_COUNT (1 << 23) |
|
#define MEASURE_ENTROPY (1 << 24) |
|
#define MEASURE_ABS_PEAK_COUNT (1 << 25) |
|
|
|
#define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL) |
|
|
|
typedef struct ChannelStats { |
|
double last; |
|
double last_non_zero; |
|
double min_non_zero; |
|
double sigma_x, sigma_x2; |
|
double avg_sigma_x2, min_sigma_x2, max_sigma_x2; |
|
double min, max; |
|
double nmin, nmax; |
|
double min_run, max_run; |
|
double min_runs, max_runs; |
|
double min_diff, max_diff; |
|
double diff1_sum; |
|
double diff1_sum_x2; |
|
double abs_peak; |
|
uint64_t mask, imask; |
|
uint64_t min_count, max_count; |
|
uint64_t abs_peak_count; |
|
uint64_t noise_floor_count; |
|
uint64_t zero_runs; |
|
uint64_t nb_samples; |
|
uint64_t nb_nans; |
|
uint64_t nb_infs; |
|
uint64_t nb_denormals; |
|
double *win_samples; |
|
double *sorted_samples; |
|
uint64_t ehistogram[HISTOGRAM_SIZE]; |
|
int sorted_front; |
|
int sorted_back; |
|
int win_pos; |
|
int max_index; |
|
double noise_floor; |
|
double entropy; |
|
} ChannelStats; |
|
|
|
typedef struct AudioStatsContext { |
|
const AVClass *class; |
|
ChannelStats *chstats; |
|
int nb_channels; |
|
uint64_t tc_samples; |
|
double time_constant; |
|
double mult; |
|
int metadata; |
|
int used; |
|
int reset_count; |
|
int nb_frames; |
|
int maxbitdepth; |
|
int measure_perchannel; |
|
int measure_overall; |
|
int is_float; |
|
int is_double; |
|
} AudioStatsContext; |
|
|
|
#define OFFSET(x) offsetof(AudioStatsContext, x) |
|
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
|
|
|
static const AVOption astats_options[] = { |
|
{ "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, 0, 10, FLAGS }, |
|
{ "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, |
|
{ "reset", "Set the number of frames over which cumulative stats are calculated before being reset", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS }, |
|
{ "measure_perchannel", "Select the parameters which are measured per channel", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" }, |
|
{ "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, "measure" }, |
|
{ "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, "measure" }, |
|
{ "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, "measure" }, |
|
{ "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, "measure" }, |
|
{ "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, "measure" }, |
|
{ "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, "measure" }, |
|
{ "Entropy" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ENTROPY }, 0, 0, FLAGS, "measure" }, |
|
{ "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, "measure" }, |
|
{ "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
|
{ "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, "measure" }, |
|
{ "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
|
{ "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
|
{ "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, "measure" }, |
|
{ "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, "measure" }, |
|
{ "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, "measure" }, |
|
{ "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, "measure" }, |
|
{ "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, "measure" }, |
|
{ "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, "measure" }, |
|
{ "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, "measure" }, |
|
{ "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, "measure" }, |
|
{ "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, "measure" }, |
|
{ "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
|
{ "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, "measure" }, |
|
{ "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, "measure" }, |
|
{ "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, "measure" }, |
|
{ "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, "measure" }, |
|
{ "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, "measure" }, |
|
{ "Abs_Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ABS_PEAK_COUNT }, 0, 0, FLAGS, "measure" }, |
|
{ "measure_overall", "Select the parameters which are measured overall", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" }, |
|
{ NULL } |
|
}; |
|
|
|
AVFILTER_DEFINE_CLASS(astats); |
|
|
|
static void reset_stats(AudioStatsContext *s) |
|
{ |
|
int c; |
|
|
|
for (c = 0; c < s->nb_channels; c++) { |
|
ChannelStats *p = &s->chstats[c]; |
|
|
|
p->min = p->nmin = p->min_sigma_x2 = DBL_MAX; |
|
p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX; |
|
p->abs_peak = 0; |
|
p->min_non_zero = DBL_MAX; |
|
p->min_diff = DBL_MAX; |
|
p->max_diff = 0; |
|
p->sigma_x = 0; |
|
p->sigma_x2 = 0; |
|
p->avg_sigma_x2 = 0; |
|
p->min_run = 0; |
|
p->max_run = 0; |
|
p->min_runs = 0; |
|
p->max_runs = 0; |
|
p->diff1_sum = 0; |
|
p->diff1_sum_x2 = 0; |
|
p->mask = 0; |
|
p->imask = 0xFFFFFFFFFFFFFFFF; |
|
p->min_count = 0; |
|
p->max_count = 0; |
|
p->abs_peak_count = 0; |
|
p->zero_runs = 0; |
|
p->nb_samples = 0; |
|
p->nb_nans = 0; |
|
p->nb_infs = 0; |
|
p->nb_denormals = 0; |
|
p->last = NAN; |
|
p->noise_floor = NAN; |
|
p->noise_floor_count = 0; |
|
p->entropy = 0; |
|
p->win_pos = 0; |
|
p->sorted_front = 0; |
|
p->sorted_back = 0; |
|
memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples)); |
|
memset(p->ehistogram, 0, sizeof(p->ehistogram)); |
|
for (int n = 0; n < s->tc_samples; n++) |
|
p->sorted_samples[n] = -1.0; |
|
} |
|
} |
|
|
|
static int config_output(AVFilterLink *outlink) |
|
{ |
|
AudioStatsContext *s = outlink->src->priv; |
|
|
|
s->chstats = av_calloc(sizeof(*s->chstats), outlink->ch_layout.nb_channels); |
|
if (!s->chstats) |
|
return AVERROR(ENOMEM); |
|
|
|
s->tc_samples = FFMAX(s->time_constant * outlink->sample_rate + .5, 1); |
|
s->nb_channels = outlink->ch_layout.nb_channels; |
|
|
|
for (int i = 0; i < s->nb_channels; i++) { |
|
ChannelStats *p = &s->chstats[i]; |
|
|
|
p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples)); |
|
if (!p->win_samples) |
|
return AVERROR(ENOMEM); |
|
|
|
p->sorted_samples = av_calloc(s->tc_samples, sizeof(*p->sorted_samples)); |
|
if (!p->sorted_samples) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
s->mult = exp((-1 / s->time_constant / outlink->sample_rate)); |
|
s->nb_frames = 0; |
|
s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8; |
|
s->is_double = outlink->format == AV_SAMPLE_FMT_DBL || |
|
outlink->format == AV_SAMPLE_FMT_DBLP; |
|
|
|
s->is_float = outlink->format == AV_SAMPLE_FMT_FLT || |
|
outlink->format == AV_SAMPLE_FMT_FLTP; |
|
|
|
reset_stats(s); |
|
|
|
return 0; |
|
} |
|
|
|
static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth) |
|
{ |
|
unsigned result = s->maxbitdepth; |
|
|
|
mask = mask & (~imask); |
|
|
|
for (; result && !(mask & 1); --result, mask >>= 1); |
|
|
|
depth->den = result; |
|
depth->num = 0; |
|
|
|
for (; result; --result, mask >>= 1) |
|
if (mask & 1) |
|
depth->num++; |
|
} |
|
|
|
static double calc_entropy(AudioStatsContext *s, ChannelStats *p) |
|
{ |
|
double entropy = 0.; |
|
|
|
for (int i = 0; i < HISTOGRAM_SIZE; i++) { |
|
double entry = p->ehistogram[i] / ((double)p->nb_samples); |
|
|
|
if (entry > 1e-8) |
|
entropy += entry * log2(entry); |
|
} |
|
|
|
return -entropy / log2(HISTOGRAM_SIZE); |
|
} |
|
|
|
static double calc_noise_floor(double *ss, double x, double px, |
|
int n, int *ffront, int *bback) |
|
{ |
|
double r, ax = fabs(x); |
|
int front = *ffront; |
|
int back = *bback; |
|
int empty = front == back && ss[front] == -1.0; |
|
|
|
if (!empty && fabs(px) == ss[front]) { |
|
ss[front] = -1.0; |
|
if (back != front) { |
|
front--; |
|
if (front < 0) |
|
front = n - 1; |
|
} |
|
empty = front == back; |
|
} |
|
|
|
if (!empty && ax >= ss[front]) { |
|
while (1) { |
|
ss[front] = -1.0; |
|
if (back == front) { |
|
empty = 1; |
|
break; |
|
} |
|
front--; |
|
if (front < 0) |
|
front = n - 1; |
|
} |
|
} |
|
|
|
while (!empty && ax >= ss[back]) { |
|
ss[back] = -1.0; |
|
if (back == front) { |
|
empty = 1; |
|
break; |
|
} |
|
back++; |
|
if (back >= n) |
|
back = 0; |
|
} |
|
|
|
if (!empty) { |
|
back--; |
|
if (back < 0) |
|
back = n - 1; |
|
} |
|
|
|
ss[back] = ax; |
|
r = ss[front]; |
|
|
|
*ffront = front; |
|
*bback = back; |
|
|
|
return r; |
|
} |
|
|
|
static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d) |
|
{ |
|
if (d < p->min) |
|
p->min = d; |
|
if (d > p->max) |
|
p->max = d; |
|
} |
|
|
|
static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i) |
|
{ |
|
double abs_d = FFABS(d); |
|
double drop, noise_floor; |
|
int index; |
|
|
|
if (p->abs_peak < abs_d) { |
|
p->abs_peak = abs_d; |
|
p->abs_peak_count = 1; |
|
} else if (p->abs_peak == abs_d) { |
|
p->abs_peak_count++; |
|
} |
|
if (d < p->min) { |
|
p->min = d; |
|
p->nmin = nd; |
|
p->min_run = 1; |
|
p->min_runs = 0; |
|
p->min_count = 1; |
|
} else if (d == p->min) { |
|
p->min_count++; |
|
p->min_run = d == p->last ? p->min_run + 1 : 1; |
|
} else if (p->last == p->min) { |
|
p->min_runs += p->min_run * p->min_run; |
|
} |
|
|
|
if (d != 0 && FFABS(d) < p->min_non_zero) |
|
p->min_non_zero = FFABS(d); |
|
|
|
if (d > p->max) { |
|
p->max = d; |
|
p->nmax = nd; |
|
p->max_run = 1; |
|
p->max_runs = 0; |
|
p->max_count = 1; |
|
} else if (d == p->max) { |
|
p->max_count++; |
|
p->max_run = d == p->last ? p->max_run + 1 : 1; |
|
} else if (p->last == p->max) { |
|
p->max_runs += p->max_run * p->max_run; |
|
} |
|
|
|
if (d != 0) { |
|
p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero); |
|
p->last_non_zero = d; |
|
} |
|
|
|
p->sigma_x += nd; |
|
p->sigma_x2 += nd * nd; |
|
p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd; |
|
if (!isnan(p->last)) { |
|
p->min_diff = FFMIN(p->min_diff, fabs(d - p->last)); |
|
p->max_diff = FFMAX(p->max_diff, fabs(d - p->last)); |
|
p->diff1_sum += fabs(d - p->last); |
|
p->diff1_sum_x2 += (d - p->last) * (d - p->last); |
|
} |
|
p->last = d; |
|
p->mask |= i; |
|
p->imask &= i; |
|
|
|
drop = p->win_samples[p->win_pos]; |
|
p->win_samples[p->win_pos] = nd; |
|
index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX); |
|
p->max_index = FFMAX(p->max_index, index); |
|
p->ehistogram[index]++; |
|
p->win_pos++; |
|
|
|
if (p->win_pos >= s->tc_samples) |
|
p->win_pos = 0; |
|
|
|
if (p->nb_samples >= s->tc_samples) { |
|
p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2); |
|
p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2); |
|
} |
|
p->nb_samples++; |
|
|
|
noise_floor = calc_noise_floor(p->sorted_samples, nd, drop, |
|
s->tc_samples, &p->sorted_front, &p->sorted_back); |
|
if (p->nb_samples >= s->tc_samples) { |
|
if (isnan(p->noise_floor)) { |
|
p->noise_floor = noise_floor; |
|
p->noise_floor_count = 1; |
|
} else { |
|
if (noise_floor < p->noise_floor) { |
|
p->noise_floor = noise_floor; |
|
p->noise_floor_count = 1; |
|
} else if (noise_floor == p->noise_floor) { |
|
p->noise_floor_count++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d) |
|
{ |
|
int type = fpclassify(d); |
|
|
|
p->nb_nans += type == FP_NAN; |
|
p->nb_infs += type == FP_INFINITE; |
|
p->nb_denormals += type == FP_SUBNORMAL; |
|
} |
|
|
|
static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d) |
|
{ |
|
int type = fpclassify(d); |
|
|
|
p->nb_nans += type == FP_NAN; |
|
p->nb_infs += type == FP_INFINITE; |
|
p->nb_denormals += type == FP_SUBNORMAL; |
|
} |
|
|
|
static void set_meta(AVDictionary **metadata, int chan, const char *key, |
|
const char *fmt, double val) |
|
{ |
|
uint8_t value[128]; |
|
uint8_t key2[128]; |
|
|
|
snprintf(value, sizeof(value), fmt, val); |
|
if (chan) |
|
snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key); |
|
else |
|
snprintf(key2, sizeof(key2), "lavfi.astats.%s", key); |
|
av_dict_set(metadata, key2, value, 0); |
|
} |
|
|
|
#define LINEAR_TO_DB(x) (log10(x) * 20) |
|
|
|
static void set_metadata(AudioStatsContext *s, AVDictionary **metadata) |
|
{ |
|
uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; |
|
uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0; |
|
uint64_t abs_peak_count = 0; |
|
double min_runs = 0, max_runs = 0, |
|
min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, |
|
nmin = DBL_MAX, nmax =-DBL_MAX, |
|
max_sigma_x = 0, |
|
diff1_sum = 0, |
|
diff1_sum_x2 = 0, |
|
sigma_x2 = 0, |
|
noise_floor = 0, |
|
entropy = 0, |
|
min_sigma_x2 = DBL_MAX, |
|
max_sigma_x2 =-DBL_MAX; |
|
AVRational depth; |
|
int c; |
|
|
|
for (c = 0; c < s->nb_channels; c++) { |
|
ChannelStats *p = &s->chstats[c]; |
|
|
|
if (p->nb_samples < s->tc_samples) |
|
p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples; |
|
|
|
min = FFMIN(min, p->min); |
|
max = FFMAX(max, p->max); |
|
nmin = FFMIN(nmin, p->nmin); |
|
nmax = FFMAX(nmax, p->nmax); |
|
min_diff = FFMIN(min_diff, p->min_diff); |
|
max_diff = FFMAX(max_diff, p->max_diff); |
|
diff1_sum += p->diff1_sum; |
|
diff1_sum_x2 += p->diff1_sum_x2; |
|
min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2); |
|
max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); |
|
sigma_x2 += p->sigma_x2; |
|
noise_floor = FFMAX(noise_floor, p->noise_floor); |
|
noise_floor_count += p->noise_floor_count; |
|
p->entropy = calc_entropy(s, p); |
|
entropy += p->entropy; |
|
min_count += p->min_count; |
|
max_count += p->max_count; |
|
abs_peak_count += p->abs_peak_count; |
|
min_runs += p->min_runs; |
|
max_runs += p->max_runs; |
|
mask |= p->mask; |
|
imask &= p->imask; |
|
nb_samples += p->nb_samples; |
|
nb_nans += p->nb_nans; |
|
nb_infs += p->nb_infs; |
|
nb_denormals += p->nb_denormals; |
|
if (fabs(p->sigma_x) > fabs(max_sigma_x)) |
|
max_sigma_x = p->sigma_x; |
|
|
|
if (s->measure_perchannel & MEASURE_DC_OFFSET) |
|
set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples); |
|
if (s->measure_perchannel & MEASURE_MIN_LEVEL) |
|
set_meta(metadata, c + 1, "Min_level", "%f", p->min); |
|
if (s->measure_perchannel & MEASURE_MAX_LEVEL) |
|
set_meta(metadata, c + 1, "Max_level", "%f", p->max); |
|
if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) |
|
set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff); |
|
if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) |
|
set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff); |
|
if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) |
|
set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1)); |
|
if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) |
|
set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); |
|
if (s->measure_perchannel & MEASURE_PEAK_LEVEL) |
|
set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); |
|
if (s->measure_perchannel & MEASURE_RMS_LEVEL) |
|
set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); |
|
if (s->measure_perchannel & MEASURE_RMS_PEAK) |
|
set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); |
|
if (s->measure_perchannel & MEASURE_RMS_TROUGH) |
|
set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2))); |
|
if (s->measure_perchannel & MEASURE_CREST_FACTOR) |
|
set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1); |
|
if (s->measure_perchannel & MEASURE_FLAT_FACTOR) |
|
set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); |
|
if (s->measure_perchannel & MEASURE_PEAK_COUNT) |
|
set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count)); |
|
if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT) |
|
set_meta(metadata, c + 1, "Peak_count", "%f", p->abs_peak_count); |
|
if (s->measure_perchannel & MEASURE_NOISE_FLOOR) |
|
set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor)); |
|
if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) |
|
set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count); |
|
if (s->measure_perchannel & MEASURE_ENTROPY) |
|
set_meta(metadata, c + 1, "Entropy", "%f", p->entropy); |
|
if (s->measure_perchannel & MEASURE_BIT_DEPTH) { |
|
bit_depth(s, p->mask, p->imask, &depth); |
|
set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num); |
|
set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den); |
|
} |
|
if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) |
|
set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); |
|
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) |
|
set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs); |
|
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) |
|
set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples); |
|
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) |
|
set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans); |
|
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) |
|
set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs); |
|
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) |
|
set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals); |
|
} |
|
|
|
if (s->measure_overall & MEASURE_DC_OFFSET) |
|
set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels)); |
|
if (s->measure_overall & MEASURE_MIN_LEVEL) |
|
set_meta(metadata, 0, "Overall.Min_level", "%f", min); |
|
if (s->measure_overall & MEASURE_MAX_LEVEL) |
|
set_meta(metadata, 0, "Overall.Max_level", "%f", max); |
|
if (s->measure_overall & MEASURE_MIN_DIFFERENCE) |
|
set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff); |
|
if (s->measure_overall & MEASURE_MAX_DIFFERENCE) |
|
set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff); |
|
if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) |
|
set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels)); |
|
if (s->measure_overall & MEASURE_RMS_DIFFERENCE) |
|
set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); |
|
if (s->measure_overall & MEASURE_PEAK_LEVEL) |
|
set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax))); |
|
if (s->measure_overall & MEASURE_RMS_LEVEL) |
|
set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); |
|
if (s->measure_overall & MEASURE_RMS_PEAK) |
|
set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2))); |
|
if (s->measure_overall & MEASURE_RMS_TROUGH) |
|
set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2))); |
|
if (s->measure_overall & MEASURE_FLAT_FACTOR) |
|
set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); |
|
if (s->measure_overall & MEASURE_PEAK_COUNT) |
|
set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_ABS_PEAK_COUNT) |
|
set_meta(metadata, 0, "Overall.Abs_Peak_count", "%f", (float)(abs_peak_count) / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_NOISE_FLOOR) |
|
set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor)); |
|
if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) |
|
set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_ENTROPY) |
|
set_meta(metadata, 0, "Overall.Entropy", "%f", entropy / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_BIT_DEPTH) { |
|
bit_depth(s, mask, imask, &depth); |
|
set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num); |
|
set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den); |
|
} |
|
if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) |
|
set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels); |
|
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) |
|
set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels); |
|
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) |
|
set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels); |
|
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) |
|
set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels); |
|
} |
|
|
|
#define UPDATE_STATS_P(type, update_func, update_float, channel_func) \ |
|
for (int c = start; c < end; c++) { \ |
|
ChannelStats *p = &s->chstats[c]; \ |
|
const type *src = (const type *)data[c]; \ |
|
const type * const srcend = src + samples; \ |
|
for (; src < srcend; src++) { \ |
|
update_func; \ |
|
update_float; \ |
|
} \ |
|
channel_func; \ |
|
} |
|
|
|
#define UPDATE_STATS_I(type, update_func, update_float, channel_func) \ |
|
for (int c = start; c < end; c++) { \ |
|
ChannelStats *p = &s->chstats[c]; \ |
|
const type *src = (const type *)data[0]; \ |
|
const type * const srcend = src + samples * channels; \ |
|
for (src += c; src < srcend; src += channels) { \ |
|
update_func; \ |
|
update_float; \ |
|
} \ |
|
channel_func; \ |
|
} |
|
|
|
#define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \ |
|
if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \ |
|
UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \ |
|
} else { \ |
|
UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \ |
|
} |
|
|
|
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
{ |
|
AudioStatsContext *s = ctx->priv; |
|
AVFilterLink *inlink = ctx->inputs[0]; |
|
AVFrame *buf = arg; |
|
const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data; |
|
const int channels = s->nb_channels; |
|
const int samples = buf->nb_samples; |
|
const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs; |
|
const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; |
|
|
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_DBLP: |
|
UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63))); |
|
break; |
|
case AV_SAMPLE_FMT_DBL: |
|
UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63))); |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31))); |
|
break; |
|
case AV_SAMPLE_FMT_FLT: |
|
UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31))); |
|
break; |
|
case AV_SAMPLE_FMT_S64P: |
|
UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src); |
|
break; |
|
case AV_SAMPLE_FMT_S64: |
|
UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src); |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src); |
|
break; |
|
case AV_SAMPLE_FMT_S32: |
|
UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src); |
|
break; |
|
case AV_SAMPLE_FMT_S16P: |
|
UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src); |
|
break; |
|
case AV_SAMPLE_FMT_S16: |
|
UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src); |
|
break; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *buf) |
|
{ |
|
AVFilterContext *ctx = inlink->dst; |
|
AudioStatsContext *s = ctx->priv; |
|
AVDictionary **metadata = &buf->metadata; |
|
|
|
if (s->reset_count > 0) { |
|
if (s->nb_frames >= s->reset_count) { |
|
reset_stats(s); |
|
s->nb_frames = 0; |
|
} |
|
s->nb_frames++; |
|
} |
|
|
|
if (s->used == 0) |
|
s->used = buf->nb_samples > 0; |
|
ff_filter_execute(ctx, filter_channel, buf, NULL, |
|
FFMIN(inlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); |
|
|
|
if (s->metadata) |
|
set_metadata(s, metadata); |
|
|
|
return ff_filter_frame(inlink->dst->outputs[0], buf); |
|
} |
|
|
|
static void print_stats(AVFilterContext *ctx) |
|
{ |
|
AudioStatsContext *s = ctx->priv; |
|
uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; |
|
uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0, abs_peak_count = 0; |
|
double min_runs = 0, max_runs = 0, |
|
min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, |
|
nmin = DBL_MAX, nmax =-DBL_MAX, |
|
max_sigma_x = 0, |
|
diff1_sum_x2 = 0, |
|
diff1_sum = 0, |
|
sigma_x2 = 0, |
|
noise_floor = 0, |
|
entropy = 0, |
|
min_sigma_x2 = DBL_MAX, |
|
max_sigma_x2 =-DBL_MAX; |
|
AVRational depth; |
|
int c; |
|
|
|
for (c = 0; c < s->nb_channels; c++) { |
|
ChannelStats *p = &s->chstats[c]; |
|
|
|
if (p->nb_samples == 0 && !s->used) |
|
continue; |
|
|
|
if (p->nb_samples < s->tc_samples) |
|
p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples; |
|
|
|
min = FFMIN(min, p->min); |
|
max = FFMAX(max, p->max); |
|
nmin = FFMIN(nmin, p->nmin); |
|
nmax = FFMAX(nmax, p->nmax); |
|
min_diff = FFMIN(min_diff, p->min_diff); |
|
max_diff = FFMAX(max_diff, p->max_diff); |
|
diff1_sum_x2 += p->diff1_sum_x2; |
|
diff1_sum += p->diff1_sum; |
|
min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2); |
|
max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); |
|
sigma_x2 += p->sigma_x2; |
|
noise_floor = FFMAX(noise_floor, p->noise_floor); |
|
p->entropy = calc_entropy(s, p); |
|
entropy += p->entropy; |
|
min_count += p->min_count; |
|
max_count += p->max_count; |
|
abs_peak_count += p->abs_peak_count; |
|
noise_floor_count += p->noise_floor_count; |
|
min_runs += p->min_runs; |
|
max_runs += p->max_runs; |
|
mask |= p->mask; |
|
imask &= p->imask; |
|
nb_samples += p->nb_samples; |
|
nb_nans += p->nb_nans; |
|
nb_infs += p->nb_infs; |
|
nb_denormals += p->nb_denormals; |
|
if (fabs(p->sigma_x) > fabs(max_sigma_x)) |
|
max_sigma_x = p->sigma_x; |
|
|
|
if (s->measure_perchannel != MEASURE_NONE) |
|
av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1); |
|
if (s->measure_perchannel & MEASURE_DC_OFFSET) |
|
av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples); |
|
if (s->measure_perchannel & MEASURE_MIN_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min); |
|
if (s->measure_perchannel & MEASURE_MAX_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max); |
|
if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff); |
|
if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff); |
|
if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1)); |
|
if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); |
|
if (s->measure_perchannel & MEASURE_PEAK_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); |
|
if (s->measure_perchannel & MEASURE_RMS_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); |
|
if (s->measure_perchannel & MEASURE_RMS_PEAK) |
|
av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); |
|
if (s->measure_perchannel & MEASURE_RMS_TROUGH) |
|
if (p->min_sigma_x2 != 1) |
|
av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2))); |
|
if (s->measure_perchannel & MEASURE_CREST_FACTOR) |
|
av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1); |
|
if (s->measure_perchannel & MEASURE_FLAT_FACTOR) |
|
av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); |
|
if (s->measure_perchannel & MEASURE_PEAK_COUNT) |
|
av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count); |
|
if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT) |
|
av_log(ctx, AV_LOG_INFO, "Abs Peak count: %"PRId64"\n", p->abs_peak_count); |
|
if (s->measure_perchannel & MEASURE_NOISE_FLOOR) |
|
av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor)); |
|
if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) |
|
av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count); |
|
if (s->measure_perchannel & MEASURE_ENTROPY) |
|
av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", p->entropy); |
|
if (s->measure_perchannel & MEASURE_BIT_DEPTH) { |
|
bit_depth(s, p->mask, p->imask, &depth); |
|
av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); |
|
} |
|
if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) |
|
av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); |
|
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) |
|
av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs); |
|
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) |
|
av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples); |
|
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) |
|
av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans); |
|
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) |
|
av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs); |
|
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) |
|
av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals); |
|
} |
|
|
|
if (nb_samples == 0 && !s->used) |
|
return; |
|
|
|
if (s->measure_overall != MEASURE_NONE) |
|
av_log(ctx, AV_LOG_INFO, "Overall\n"); |
|
if (s->measure_overall & MEASURE_DC_OFFSET) |
|
av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels)); |
|
if (s->measure_overall & MEASURE_MIN_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min); |
|
if (s->measure_overall & MEASURE_MAX_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max); |
|
if (s->measure_overall & MEASURE_MIN_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff); |
|
if (s->measure_overall & MEASURE_MAX_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff); |
|
if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels)); |
|
if (s->measure_overall & MEASURE_RMS_DIFFERENCE) |
|
av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); |
|
if (s->measure_overall & MEASURE_PEAK_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax))); |
|
if (s->measure_overall & MEASURE_RMS_LEVEL) |
|
av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); |
|
if (s->measure_overall & MEASURE_RMS_PEAK) |
|
av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2))); |
|
if (s->measure_overall & MEASURE_RMS_TROUGH) |
|
if (min_sigma_x2 != 1) |
|
av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2))); |
|
if (s->measure_overall & MEASURE_FLAT_FACTOR) |
|
av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); |
|
if (s->measure_overall & MEASURE_PEAK_COUNT) |
|
av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_ABS_PEAK_COUNT) |
|
av_log(ctx, AV_LOG_INFO, "Abs Peak count: %f\n", abs_peak_count / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_NOISE_FLOOR) |
|
av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor)); |
|
if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) |
|
av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_ENTROPY) |
|
av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", entropy / (double)s->nb_channels); |
|
if (s->measure_overall & MEASURE_BIT_DEPTH) { |
|
bit_depth(s, mask, imask, &depth); |
|
av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); |
|
} |
|
if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) |
|
av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels); |
|
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) |
|
av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels); |
|
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) |
|
av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels); |
|
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) |
|
av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels); |
|
} |
|
|
|
static av_cold void uninit(AVFilterContext *ctx) |
|
{ |
|
AudioStatsContext *s = ctx->priv; |
|
|
|
if (s->nb_channels) |
|
print_stats(ctx); |
|
if (s->chstats) { |
|
for (int i = 0; i < s->nb_channels; i++) { |
|
ChannelStats *p = &s->chstats[i]; |
|
|
|
av_freep(&p->win_samples); |
|
av_freep(&p->sorted_samples); |
|
} |
|
} |
|
av_freep(&s->chstats); |
|
} |
|
|
|
static const AVFilterPad astats_inputs[] = { |
|
{ |
|
.name = "default", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.filter_frame = filter_frame, |
|
}, |
|
}; |
|
|
|
static const AVFilterPad astats_outputs[] = { |
|
{ |
|
.name = "default", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.config_props = config_output, |
|
}, |
|
}; |
|
|
|
const AVFilter ff_af_astats = { |
|
.name = "astats", |
|
.description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."), |
|
.priv_size = sizeof(AudioStatsContext), |
|
.priv_class = &astats_class, |
|
.uninit = uninit, |
|
FILTER_INPUTS(astats_inputs), |
|
FILTER_OUTPUTS(astats_outputs), |
|
FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P, |
|
AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P, |
|
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP), |
|
.flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_METADATA_ONLY, |
|
}; |
|
|