|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "config_components.h" |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/ffmath.h" |
|
#include "libavutil/opt.h" |
|
#include "audio.h" |
|
#include "avfilter.h" |
|
#include "filters.h" |
|
#include "formats.h" |
|
#include "internal.h" |
|
|
|
enum FilterType { |
|
biquad, |
|
equalizer, |
|
bass, |
|
treble, |
|
bandpass, |
|
bandreject, |
|
allpass, |
|
highpass, |
|
lowpass, |
|
lowshelf, |
|
highshelf, |
|
tiltshelf, |
|
}; |
|
|
|
enum WidthType { |
|
NONE, |
|
HERTZ, |
|
OCTAVE, |
|
QFACTOR, |
|
SLOPE, |
|
KHERTZ, |
|
NB_WTYPE, |
|
}; |
|
|
|
enum TransformType { |
|
DI, |
|
DII, |
|
TDI, |
|
TDII, |
|
LATT, |
|
SVF, |
|
ZDF, |
|
NB_TTYPE, |
|
}; |
|
|
|
typedef struct BiquadsContext { |
|
const AVClass *class; |
|
|
|
enum FilterType filter_type; |
|
int width_type; |
|
int poles; |
|
int csg; |
|
int transform_type; |
|
int precision; |
|
int block_samples; |
|
|
|
int bypass; |
|
|
|
double gain; |
|
double frequency; |
|
double width; |
|
double mix; |
|
char *ch_layout_str; |
|
AVChannelLayout ch_layout; |
|
int normalize; |
|
int order; |
|
|
|
double a_double[3]; |
|
double b_double[3]; |
|
|
|
float a_float[3]; |
|
float b_float[3]; |
|
|
|
double oa[3]; |
|
double ob[3]; |
|
|
|
AVFrame *block[3]; |
|
|
|
int *clip; |
|
AVFrame *cache[2]; |
|
int block_align; |
|
|
|
int64_t pts; |
|
int nb_samples; |
|
|
|
void (*filter)(struct BiquadsContext *s, const void *ibuf, void *obuf, int len, |
|
void *cache, int *clip, int disabled); |
|
} BiquadsContext; |
|
|
|
static int query_formats(AVFilterContext *ctx) |
|
{ |
|
BiquadsContext *s = ctx->priv; |
|
static const enum AVSampleFormat auto_sample_fmts[] = { |
|
AV_SAMPLE_FMT_S16P, |
|
AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_DBLP, |
|
AV_SAMPLE_FMT_NONE |
|
}; |
|
enum AVSampleFormat sample_fmts[] = { |
|
AV_SAMPLE_FMT_S16P, |
|
AV_SAMPLE_FMT_NONE |
|
}; |
|
const enum AVSampleFormat *sample_fmts_list = sample_fmts; |
|
int ret = ff_set_common_all_channel_counts(ctx); |
|
if (ret < 0) |
|
return ret; |
|
|
|
switch (s->precision) { |
|
case 0: |
|
sample_fmts[0] = AV_SAMPLE_FMT_S16P; |
|
break; |
|
case 1: |
|
sample_fmts[0] = AV_SAMPLE_FMT_S32P; |
|
break; |
|
case 2: |
|
sample_fmts[0] = AV_SAMPLE_FMT_FLTP; |
|
break; |
|
case 3: |
|
sample_fmts[0] = AV_SAMPLE_FMT_DBLP; |
|
break; |
|
default: |
|
sample_fmts_list = auto_sample_fmts; |
|
break; |
|
} |
|
ret = ff_set_common_formats_from_list(ctx, sample_fmts_list); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return ff_set_common_all_samplerates(ctx); |
|
} |
|
|
|
#define BIQUAD_FILTER(name, type, ftype, min, max, need_clipping) \ |
|
static void biquad_## name (BiquadsContext *s, \ |
|
const void *input, void *output, int len, \ |
|
void *cache, int *clippings, int disabled) \ |
|
{ \ |
|
const type *ibuf = input; \ |
|
type *obuf = output; \ |
|
ftype *fcache = cache; \ |
|
ftype i1 = fcache[0], i2 = fcache[1], o1 = fcache[2], o2 = fcache[3]; \ |
|
ftype *a = s->a_##ftype; \ |
|
ftype *b = s->b_##ftype; \ |
|
ftype a1 = -a[1]; \ |
|
ftype a2 = -a[2]; \ |
|
ftype b0 = b[0]; \ |
|
ftype b1 = b[1]; \ |
|
ftype b2 = b[2]; \ |
|
ftype wet = s->mix; \ |
|
ftype dry = 1. - wet; \ |
|
ftype out; \ |
|
int i; \ |
|
\ |
|
for (i = 0; i+1 < len; i++) { \ |
|
o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1; \ |
|
i2 = ibuf[i]; \ |
|
out = o2 * wet + i2 * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = i2; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
i++; \ |
|
o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1; \ |
|
i1 = ibuf[i]; \ |
|
out = o1 * wet + i1 * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = i1; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
if (i < len) { \ |
|
ftype o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \ |
|
i2 = i1; \ |
|
i1 = ibuf[i]; \ |
|
o2 = o1; \ |
|
o1 = o0; \ |
|
out = o0 * wet + i1 * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = i1; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
fcache[0] = i1; \ |
|
fcache[1] = i2; \ |
|
fcache[2] = o1; \ |
|
fcache[3] = o2; \ |
|
} |
|
|
|
BIQUAD_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
|
BIQUAD_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
|
BIQUAD_FILTER(flt, float, float, -1.f, 1.f, 0) |
|
BIQUAD_FILTER(dbl, double, double, -1., 1., 0) |
|
|
|
#define BIQUAD_DII_FILTER(name, type, ftype, min, max, need_clipping) \ |
|
static void biquad_dii_## name (BiquadsContext *s, \ |
|
const void *input, void *output, int len, \ |
|
void *cache, int *clippings, int disabled) \ |
|
{ \ |
|
const type *ibuf = input; \ |
|
type *obuf = output; \ |
|
ftype *fcache = cache; \ |
|
ftype *a = s->a_##ftype; \ |
|
ftype *b = s->b_##ftype; \ |
|
ftype a1 = -a[1]; \ |
|
ftype a2 = -a[2]; \ |
|
ftype b0 = b[0]; \ |
|
ftype b1 = b[1]; \ |
|
ftype b2 = b[2]; \ |
|
ftype w1 = fcache[0]; \ |
|
ftype w2 = fcache[1]; \ |
|
ftype wet = s->mix; \ |
|
ftype dry = 1. - wet; \ |
|
ftype in, out, w0; \ |
|
\ |
|
for (int i = 0; i < len; i++) { \ |
|
in = ibuf[i]; \ |
|
w0 = in + a1 * w1 + a2 * w2; \ |
|
out = b0 * w0 + b1 * w1 + b2 * w2; \ |
|
w2 = w1; \ |
|
w1 = w0; \ |
|
out = out * wet + in * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = in; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
fcache[0] = w1; \ |
|
fcache[1] = w2; \ |
|
} |
|
|
|
BIQUAD_DII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
|
BIQUAD_DII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
|
BIQUAD_DII_FILTER(flt, float, float, -1.f, 1.f, 0) |
|
BIQUAD_DII_FILTER(dbl, double, double, -1., 1., 0) |
|
|
|
#define BIQUAD_TDI_FILTER(name, type, ftype, min, max, need_clipping) \ |
|
static void biquad_tdi_## name (BiquadsContext *s, \ |
|
const void *input, void *output, int len, \ |
|
void *cache, int *clippings, int disabled) \ |
|
{ \ |
|
const type *ibuf = input; \ |
|
type *obuf = output; \ |
|
ftype *fcache = cache; \ |
|
ftype *a = s->a_##ftype; \ |
|
ftype *b = s->b_##ftype; \ |
|
ftype a1 = -a[1]; \ |
|
ftype a2 = -a[2]; \ |
|
ftype b0 = b[0]; \ |
|
ftype b1 = b[1]; \ |
|
ftype b2 = b[2]; \ |
|
ftype s1 = fcache[0]; \ |
|
ftype s2 = fcache[1]; \ |
|
ftype s3 = fcache[2]; \ |
|
ftype s4 = fcache[3]; \ |
|
ftype wet = s->mix; \ |
|
ftype dry = 1. - wet; \ |
|
ftype in, out; \ |
|
\ |
|
for (int i = 0; i < len; i++) { \ |
|
ftype t1, t2, t3, t4; \ |
|
in = ibuf[i] + s1; \ |
|
t1 = in * a1 + s2; \ |
|
t2 = in * a2; \ |
|
t3 = in * b1 + s4; \ |
|
t4 = in * b2; \ |
|
out = b0 * in + s3; \ |
|
out = out * wet + in * dry; \ |
|
s1 = t1; s2 = t2; s3 = t3; s4 = t4; \ |
|
if (disabled) { \ |
|
obuf[i] = in; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
\ |
|
fcache[0] = s1; \ |
|
fcache[1] = s2; \ |
|
fcache[2] = s3; \ |
|
fcache[3] = s4; \ |
|
} |
|
|
|
BIQUAD_TDI_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
|
BIQUAD_TDI_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
|
BIQUAD_TDI_FILTER(flt, float, float, -1.f, 1.f, 0) |
|
BIQUAD_TDI_FILTER(dbl, double, double, -1., 1., 0) |
|
|
|
#define BIQUAD_TDII_FILTER(name, type, ftype, min, max, need_clipping) \ |
|
static void biquad_tdii_## name (BiquadsContext *s, \ |
|
const void *input, void *output, int len, \ |
|
void *cache, int *clippings, int disabled) \ |
|
{ \ |
|
const type *ibuf = input; \ |
|
type *obuf = output; \ |
|
ftype *fcache = cache; \ |
|
ftype *a = s->a_##ftype; \ |
|
ftype *b = s->b_##ftype; \ |
|
ftype a1 = -a[1]; \ |
|
ftype a2 = -a[2]; \ |
|
ftype b0 = b[0]; \ |
|
ftype b1 = b[1]; \ |
|
ftype b2 = b[2]; \ |
|
ftype w1 = fcache[0]; \ |
|
ftype w2 = fcache[1]; \ |
|
ftype wet = s->mix; \ |
|
ftype dry = 1. - wet; \ |
|
ftype in, out; \ |
|
\ |
|
for (int i = 0; i < len; i++) { \ |
|
in = ibuf[i]; \ |
|
out = b0 * in + w1; \ |
|
w1 = b1 * in + w2 + a1 * out; \ |
|
w2 = b2 * in + a2 * out; \ |
|
out = out * wet + in * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = in; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
fcache[0] = w1; \ |
|
fcache[1] = w2; \ |
|
} |
|
|
|
BIQUAD_TDII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
|
BIQUAD_TDII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
|
BIQUAD_TDII_FILTER(flt, float, float, -1.f, 1.f, 0) |
|
BIQUAD_TDII_FILTER(dbl, double, double, -1., 1., 0) |
|
|
|
#define BIQUAD_LATT_FILTER(name, type, ftype, min, max, need_clipping) \ |
|
static void biquad_latt_## name (BiquadsContext *s, \ |
|
const void *input, void *output, int len, \ |
|
void *cache, int *clippings, int disabled) \ |
|
{ \ |
|
const type *ibuf = input; \ |
|
type *obuf = output; \ |
|
ftype *fcache = cache; \ |
|
ftype *a = s->a_##ftype; \ |
|
ftype *b = s->b_##ftype; \ |
|
ftype k0 = a[1]; \ |
|
ftype k1 = a[2]; \ |
|
ftype v0 = b[0]; \ |
|
ftype v1 = b[1]; \ |
|
ftype v2 = b[2]; \ |
|
ftype s0 = fcache[0]; \ |
|
ftype s1 = fcache[1]; \ |
|
ftype wet = s->mix; \ |
|
ftype dry = 1. - wet; \ |
|
ftype in, out; \ |
|
ftype t0, t1; \ |
|
\ |
|
for (int i = 0; i < len; i++) { \ |
|
out = 0.; \ |
|
in = ibuf[i]; \ |
|
t0 = in - k1 * s0; \ |
|
t1 = t0 * k1 + s0; \ |
|
out += t1 * v2; \ |
|
\ |
|
t0 = t0 - k0 * s1; \ |
|
t1 = t0 * k0 + s1; \ |
|
out += t1 * v1; \ |
|
\ |
|
out += t0 * v0; \ |
|
s0 = t1; \ |
|
s1 = t0; \ |
|
\ |
|
out = out * wet + in * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = in; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
fcache[0] = s0; \ |
|
fcache[1] = s1; \ |
|
} |
|
|
|
BIQUAD_LATT_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
|
BIQUAD_LATT_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
|
BIQUAD_LATT_FILTER(flt, float, float, -1.f, 1.f, 0) |
|
BIQUAD_LATT_FILTER(dbl, double, double, -1., 1., 0) |
|
|
|
#define BIQUAD_SVF_FILTER(name, type, ftype, min, max, need_clipping) \ |
|
static void biquad_svf_## name (BiquadsContext *s, \ |
|
const void *input, void *output, int len, \ |
|
void *cache, int *clippings, int disabled) \ |
|
{ \ |
|
const type *ibuf = input; \ |
|
type *obuf = output; \ |
|
ftype *fcache = cache; \ |
|
ftype *a = s->a_##ftype; \ |
|
ftype *b = s->b_##ftype; \ |
|
ftype a1 = a[1]; \ |
|
ftype a2 = a[2]; \ |
|
ftype b0 = b[0]; \ |
|
ftype b1 = b[1]; \ |
|
ftype b2 = b[2]; \ |
|
ftype s0 = fcache[0]; \ |
|
ftype s1 = fcache[1]; \ |
|
ftype wet = s->mix; \ |
|
ftype dry = 1. - wet; \ |
|
ftype in, out; \ |
|
ftype t0, t1; \ |
|
\ |
|
for (int i = 0; i < len; i++) { \ |
|
in = ibuf[i]; \ |
|
out = b2 * in + s0; \ |
|
t0 = b0 * in + a1 * s0 + s1; \ |
|
t1 = b1 * in + a2 * s0; \ |
|
s0 = t0; \ |
|
s1 = t1; \ |
|
\ |
|
out = out * wet + in * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = in; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
fcache[0] = s0; \ |
|
fcache[1] = s1; \ |
|
} |
|
|
|
BIQUAD_SVF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
|
BIQUAD_SVF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
|
BIQUAD_SVF_FILTER(flt, float, float, -1.f, 1.f, 0) |
|
BIQUAD_SVF_FILTER(dbl, double, double, -1., 1., 0) |
|
|
|
#define BIQUAD_ZDF_FILTER(name, type, ftype, min, max, need_clipping, two) \ |
|
static void biquad_zdf_## name (BiquadsContext *s, \ |
|
const void *input, void *output, int len, \ |
|
void *cache, int *clippings, int disabled) \ |
|
{ \ |
|
const type *ibuf = input; \ |
|
type *obuf = output; \ |
|
ftype *fcache = cache; \ |
|
ftype *a = s->a_##ftype; \ |
|
ftype *b = s->b_##ftype; \ |
|
ftype m0 = b[0]; \ |
|
ftype m1 = b[1]; \ |
|
ftype m2 = b[2]; \ |
|
ftype a0 = a[0]; \ |
|
ftype a1 = a[1]; \ |
|
ftype a2 = a[2]; \ |
|
ftype b0 = fcache[0]; \ |
|
ftype b1 = fcache[1]; \ |
|
ftype wet = s->mix; \ |
|
ftype dry = 1. - wet; \ |
|
ftype out; \ |
|
\ |
|
for (int i = 0; i < len; i++) { \ |
|
const ftype in = ibuf[i]; \ |
|
const ftype v0 = in; \ |
|
const ftype v3 = v0 - b1; \ |
|
const ftype v1 = a0 * b0 + a1 * v3; \ |
|
const ftype v2 = b1 + a1 * b0 + a2 * v3; \ |
|
\ |
|
b0 = two * v1 - b0; \ |
|
b1 = two * v2 - b1; \ |
|
\ |
|
out = m0 * v0 + m1 * v1 + m2 * v2; \ |
|
out = out * wet + in * dry; \ |
|
if (disabled) { \ |
|
obuf[i] = in; \ |
|
} else if (need_clipping && out < min) { \ |
|
(*clippings)++; \ |
|
obuf[i] = min; \ |
|
} else if (need_clipping && out > max) { \ |
|
(*clippings)++; \ |
|
obuf[i] = max; \ |
|
} else { \ |
|
obuf[i] = out; \ |
|
} \ |
|
} \ |
|
fcache[0] = b0; \ |
|
fcache[1] = b1; \ |
|
} |
|
|
|
BIQUAD_ZDF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1, 2.f) |
|
BIQUAD_ZDF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1, 2.0) |
|
BIQUAD_ZDF_FILTER(flt, float, float, -1.f, 1.f, 0, 2.f) |
|
BIQUAD_ZDF_FILTER(dbl, double, double, -1., 1., 0, 2.0) |
|
|
|
static void convert_dir2latt(BiquadsContext *s) |
|
{ |
|
double k0, k1, v0, v1, v2; |
|
|
|
k1 = s->a_double[2]; |
|
k0 = s->a_double[1] / (1. + k1); |
|
v2 = s->b_double[2]; |
|
v1 = s->b_double[1] - v2 * s->a_double[1]; |
|
v0 = s->b_double[0] - v1 * k0 - v2 * k1; |
|
|
|
s->a_double[1] = k0; |
|
s->a_double[2] = k1; |
|
s->b_double[0] = v0; |
|
s->b_double[1] = v1; |
|
s->b_double[2] = v2; |
|
} |
|
|
|
static void convert_dir2svf(BiquadsContext *s) |
|
{ |
|
double a[2]; |
|
double b[3]; |
|
|
|
a[0] = -s->a_double[1]; |
|
a[1] = -s->a_double[2]; |
|
b[0] = s->b_double[1] - s->a_double[1] * s->b_double[0]; |
|
b[1] = s->b_double[2] - s->a_double[2] * s->b_double[0]; |
|
b[2] = s->b_double[0]; |
|
|
|
s->a_double[1] = a[0]; |
|
s->a_double[2] = a[1]; |
|
s->b_double[0] = b[0]; |
|
s->b_double[1] = b[1]; |
|
s->b_double[2] = b[2]; |
|
} |
|
|
|
static double convert_width2qfactor(double width, |
|
double frequency, |
|
double gain, |
|
double sample_rate, |
|
int width_type) |
|
{ |
|
double w0 = 2. * M_PI * frequency / sample_rate; |
|
double A = ff_exp10(gain / 40.); |
|
double ret; |
|
|
|
switch (width_type) { |
|
case NONE: |
|
case QFACTOR: |
|
ret = width; |
|
break; |
|
case HERTZ: |
|
ret = frequency / width; |
|
break; |
|
case KHERTZ: |
|
ret = frequency / (width * 1000.); |
|
break; |
|
case OCTAVE: |
|
ret = 1. / (2. * sinh(log(2.) / 2. * width * w0 / sin(w0))); |
|
break; |
|
case SLOPE: |
|
ret = 1. / sqrt((A + 1. / A) * (1. / width - 1.) + 2.); |
|
break; |
|
default: |
|
av_assert0(0); |
|
break; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static void convert_dir2zdf(BiquadsContext *s, int sample_rate) |
|
{ |
|
double Q = convert_width2qfactor(s->width, s->frequency, s->gain, sample_rate, s->width_type); |
|
double g, k, A; |
|
double a[3]; |
|
double m[3]; |
|
|
|
switch (s->filter_type) { |
|
case biquad: |
|
a[0] = s->oa[0]; |
|
a[1] = s->oa[1]; |
|
a[2] = s->oa[2]; |
|
m[0] = s->ob[0]; |
|
m[1] = s->ob[1]; |
|
m[2] = s->ob[2]; |
|
break; |
|
case equalizer: |
|
A = ff_exp10(s->gain / 40.); |
|
g = tan(M_PI * s->frequency / sample_rate); |
|
k = 1. / (Q * A); |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 1.; |
|
m[1] = k * (A * A - 1.); |
|
m[2] = 0.; |
|
break; |
|
case bass: |
|
case lowshelf: |
|
A = ff_exp10(s->gain / 40.); |
|
g = tan(M_PI * s->frequency / sample_rate) / sqrt(A); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 1.; |
|
m[1] = k * (A - 1.); |
|
m[2] = A * A - 1.; |
|
break; |
|
case tiltshelf: |
|
A = ff_exp10(s->gain / 20.); |
|
g = tan(M_PI * s->frequency / sample_rate) / sqrt(A); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 1./ A; |
|
m[1] = k * (A - 1.) / A; |
|
m[2] = (A * A - 1.) / A; |
|
break; |
|
case treble: |
|
case highshelf: |
|
A = ff_exp10(s->gain / 40.); |
|
g = tan(M_PI * s->frequency / sample_rate) * sqrt(A); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = A * A; |
|
m[1] = k * (1. - A) * A; |
|
m[2] = 1. - A * A; |
|
break; |
|
case bandpass: |
|
g = tan(M_PI * s->frequency / sample_rate); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 0.; |
|
m[1] = s->csg ? 1. : k; |
|
m[2] = 0.; |
|
break; |
|
case bandreject: |
|
g = tan(M_PI * s->frequency / sample_rate); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 1.; |
|
m[1] = -k; |
|
m[2] = 0.; |
|
break; |
|
case lowpass: |
|
g = tan(M_PI * s->frequency / sample_rate); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 0.; |
|
m[1] = 0.; |
|
m[2] = 1.; |
|
break; |
|
case highpass: |
|
g = tan(M_PI * s->frequency / sample_rate); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 1.; |
|
m[1] = -k; |
|
m[2] = -1.; |
|
break; |
|
case allpass: |
|
g = tan(M_PI * s->frequency / sample_rate); |
|
k = 1. / Q; |
|
a[0] = 1. / (1. + g * (g + k)); |
|
a[1] = g * a[0]; |
|
a[2] = g * a[1]; |
|
m[0] = 1.; |
|
m[1] = -2. * k; |
|
m[2] = 0.; |
|
break; |
|
default: |
|
av_assert0(0); |
|
} |
|
|
|
s->a_double[0] = a[0]; |
|
s->a_double[1] = a[1]; |
|
s->a_double[2] = a[2]; |
|
s->b_double[0] = m[0]; |
|
s->b_double[1] = m[1]; |
|
s->b_double[2] = m[2]; |
|
} |
|
|
|
static int config_filter(AVFilterLink *outlink, int reset) |
|
{ |
|
AVFilterContext *ctx = outlink->src; |
|
BiquadsContext *s = ctx->priv; |
|
AVFilterLink *inlink = ctx->inputs[0]; |
|
double gain = s->gain * ((s->filter_type == tiltshelf) + 1.); |
|
double A = ff_exp10(gain / 40); |
|
double w0 = 2 * M_PI * s->frequency / inlink->sample_rate; |
|
double K = tan(w0 / 2.); |
|
double alpha, beta; |
|
|
|
s->bypass = (((w0 > M_PI || w0 <= 0.) && reset) || (s->width <= 0.)) && (s->filter_type != biquad); |
|
if (s->bypass) { |
|
av_log(ctx, AV_LOG_WARNING, "Invalid frequency and/or width!\n"); |
|
return 0; |
|
} |
|
|
|
if ((w0 > M_PI || w0 <= 0.) && (s->filter_type != biquad)) |
|
return AVERROR(EINVAL); |
|
|
|
switch (s->width_type) { |
|
case NONE: |
|
alpha = 0.0; |
|
break; |
|
case HERTZ: |
|
alpha = sin(w0) / (2 * s->frequency / s->width); |
|
break; |
|
case KHERTZ: |
|
alpha = sin(w0) / (2 * s->frequency / (s->width * 1000)); |
|
break; |
|
case OCTAVE: |
|
alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0)); |
|
break; |
|
case QFACTOR: |
|
alpha = sin(w0) / (2 * s->width); |
|
break; |
|
case SLOPE: |
|
alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2); |
|
break; |
|
default: |
|
av_assert0(0); |
|
} |
|
|
|
beta = 2 * sqrt(A); |
|
|
|
switch (s->filter_type) { |
|
case biquad: |
|
s->a_double[0] = s->oa[0]; |
|
s->a_double[1] = s->oa[1]; |
|
s->a_double[2] = s->oa[2]; |
|
s->b_double[0] = s->ob[0]; |
|
s->b_double[1] = s->ob[1]; |
|
s->b_double[2] = s->ob[2]; |
|
break; |
|
case equalizer: |
|
s->a_double[0] = 1 + alpha / A; |
|
s->a_double[1] = -2 * cos(w0); |
|
s->a_double[2] = 1 - alpha / A; |
|
s->b_double[0] = 1 + alpha * A; |
|
s->b_double[1] = -2 * cos(w0); |
|
s->b_double[2] = 1 - alpha * A; |
|
break; |
|
case bass: |
|
beta = sqrt((A * A + 1) - (A - 1) * (A - 1)); |
|
case tiltshelf: |
|
case lowshelf: |
|
if (s->poles == 1) { |
|
double A = ff_exp10(gain / 20); |
|
double ro = -sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4); |
|
double n = (A + 1) / (A - 1); |
|
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1); |
|
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5; |
|
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5; |
|
|
|
s->a_double[0] = 1 + ro * alpha1; |
|
s->a_double[1] = -ro - alpha1; |
|
s->a_double[2] = 0; |
|
s->b_double[0] = beta0 + ro * beta1; |
|
s->b_double[1] = -beta1 - ro * beta0; |
|
s->b_double[2] = 0; |
|
} else { |
|
s->a_double[0] = (A + 1) + (A - 1) * cos(w0) + beta * alpha; |
|
s->a_double[1] = -2 * ((A - 1) + (A + 1) * cos(w0)); |
|
s->a_double[2] = (A + 1) + (A - 1) * cos(w0) - beta * alpha; |
|
s->b_double[0] = A * ((A + 1) - (A - 1) * cos(w0) + beta * alpha); |
|
s->b_double[1] = 2 * A * ((A - 1) - (A + 1) * cos(w0)); |
|
s->b_double[2] = A * ((A + 1) - (A - 1) * cos(w0) - beta * alpha); |
|
} |
|
break; |
|
case treble: |
|
beta = sqrt((A * A + 1) - (A - 1) * (A - 1)); |
|
case highshelf: |
|
if (s->poles == 1) { |
|
double A = ff_exp10(gain / 20); |
|
double ro = sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4); |
|
double n = (A + 1) / (A - 1); |
|
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1); |
|
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5; |
|
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5; |
|
|
|
s->a_double[0] = 1 + ro * alpha1; |
|
s->a_double[1] = ro + alpha1; |
|
s->a_double[2] = 0; |
|
s->b_double[0] = beta0 + ro * beta1; |
|
s->b_double[1] = beta1 + ro * beta0; |
|
s->b_double[2] = 0; |
|
} else { |
|
s->a_double[0] = (A + 1) - (A - 1) * cos(w0) + beta * alpha; |
|
s->a_double[1] = 2 * ((A - 1) - (A + 1) * cos(w0)); |
|
s->a_double[2] = (A + 1) - (A - 1) * cos(w0) - beta * alpha; |
|
s->b_double[0] = A * ((A + 1) + (A - 1) * cos(w0) + beta * alpha); |
|
s->b_double[1] =-2 * A * ((A - 1) + (A + 1) * cos(w0)); |
|
s->b_double[2] = A * ((A + 1) + (A - 1) * cos(w0) - beta * alpha); |
|
} |
|
break; |
|
case bandpass: |
|
if (s->csg) { |
|
s->a_double[0] = 1 + alpha; |
|
s->a_double[1] = -2 * cos(w0); |
|
s->a_double[2] = 1 - alpha; |
|
s->b_double[0] = sin(w0) / 2; |
|
s->b_double[1] = 0; |
|
s->b_double[2] = -sin(w0) / 2; |
|
} else { |
|
s->a_double[0] = 1 + alpha; |
|
s->a_double[1] = -2 * cos(w0); |
|
s->a_double[2] = 1 - alpha; |
|
s->b_double[0] = alpha; |
|
s->b_double[1] = 0; |
|
s->b_double[2] = -alpha; |
|
} |
|
break; |
|
case bandreject: |
|
s->a_double[0] = 1 + alpha; |
|
s->a_double[1] = -2 * cos(w0); |
|
s->a_double[2] = 1 - alpha; |
|
s->b_double[0] = 1; |
|
s->b_double[1] = -2 * cos(w0); |
|
s->b_double[2] = 1; |
|
break; |
|
case lowpass: |
|
if (s->poles == 1) { |
|
s->a_double[0] = 1; |
|
s->a_double[1] = -exp(-w0); |
|
s->a_double[2] = 0; |
|
s->b_double[0] = 1 + s->a_double[1]; |
|
s->b_double[1] = 0; |
|
s->b_double[2] = 0; |
|
} else { |
|
s->a_double[0] = 1 + alpha; |
|
s->a_double[1] = -2 * cos(w0); |
|
s->a_double[2] = 1 - alpha; |
|
s->b_double[0] = (1 - cos(w0)) / 2; |
|
s->b_double[1] = 1 - cos(w0); |
|
s->b_double[2] = (1 - cos(w0)) / 2; |
|
} |
|
break; |
|
case highpass: |
|
if (s->poles == 1) { |
|
s->a_double[0] = 1; |
|
s->a_double[1] = -exp(-w0); |
|
s->a_double[2] = 0; |
|
s->b_double[0] = (1 - s->a_double[1]) / 2; |
|
s->b_double[1] = -s->b_double[0]; |
|
s->b_double[2] = 0; |
|
} else { |
|
s->a_double[0] = 1 + alpha; |
|
s->a_double[1] = -2 * cos(w0); |
|
s->a_double[2] = 1 - alpha; |
|
s->b_double[0] = (1 + cos(w0)) / 2; |
|
s->b_double[1] = -(1 + cos(w0)); |
|
s->b_double[2] = (1 + cos(w0)) / 2; |
|
} |
|
break; |
|
case allpass: |
|
switch (s->order) { |
|
case 1: |
|
s->a_double[0] = 1.; |
|
s->a_double[1] = -(1. - K) / (1. + K); |
|
s->a_double[2] = 0.; |
|
s->b_double[0] = s->a_double[1]; |
|
s->b_double[1] = s->a_double[0]; |
|
s->b_double[2] = 0.; |
|
break; |
|
case 2: |
|
s->a_double[0] = 1 + alpha; |
|
s->a_double[1] = -2 * cos(w0); |
|
s->a_double[2] = 1 - alpha; |
|
s->b_double[0] = 1 - alpha; |
|
s->b_double[1] = -2 * cos(w0); |
|
s->b_double[2] = 1 + alpha; |
|
break; |
|
} |
|
break; |
|
default: |
|
av_assert0(0); |
|
} |
|
|
|
av_log(ctx, AV_LOG_VERBOSE, "a=%f %f %f:b=%f %f %f\n", |
|
s->a_double[0], s->a_double[1], s->a_double[2], |
|
s->b_double[0], s->b_double[1], s->b_double[2]); |
|
|
|
s->a_double[1] /= s->a_double[0]; |
|
s->a_double[2] /= s->a_double[0]; |
|
s->b_double[0] /= s->a_double[0]; |
|
s->b_double[1] /= s->a_double[0]; |
|
s->b_double[2] /= s->a_double[0]; |
|
s->a_double[0] /= s->a_double[0]; |
|
|
|
if (s->normalize && fabs(s->b_double[0] + s->b_double[1] + s->b_double[2]) > 1e-6) { |
|
double factor = (s->a_double[0] + s->a_double[1] + s->a_double[2]) / |
|
(s->b_double[0] + s->b_double[1] + s->b_double[2]); |
|
|
|
s->b_double[0] *= factor; |
|
s->b_double[1] *= factor; |
|
s->b_double[2] *= factor; |
|
} |
|
|
|
switch (s->filter_type) { |
|
case tiltshelf: |
|
s->b_double[0] /= A; |
|
s->b_double[1] /= A; |
|
s->b_double[2] /= A; |
|
break; |
|
} |
|
|
|
if (!s->cache[0]) |
|
s->cache[0] = ff_get_audio_buffer(outlink, 4 * sizeof(double)); |
|
if (!s->clip) |
|
s->clip = av_calloc(outlink->ch_layout.nb_channels, sizeof(*s->clip)); |
|
if (!s->cache[0] || !s->clip) |
|
return AVERROR(ENOMEM); |
|
if (reset) { |
|
av_samples_set_silence(s->cache[0]->extended_data, 0, s->cache[0]->nb_samples, |
|
s->cache[0]->ch_layout.nb_channels, s->cache[0]->format); |
|
} |
|
|
|
if (reset && s->block_samples > 0) { |
|
if (!s->cache[1]) |
|
s->cache[1] = ff_get_audio_buffer(outlink, 4 * sizeof(double)); |
|
if (!s->cache[1]) |
|
return AVERROR(ENOMEM); |
|
av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples, |
|
s->cache[1]->ch_layout.nb_channels, s->cache[1]->format); |
|
for (int i = 0; i < 3; i++) { |
|
if (!s->block[i]) |
|
s->block[i] = ff_get_audio_buffer(outlink, s->block_samples * 2); |
|
if (!s->block[i]) |
|
return AVERROR(ENOMEM); |
|
av_samples_set_silence(s->block[i]->extended_data, 0, s->block_samples * 2, |
|
s->block[i]->ch_layout.nb_channels, s->block[i]->format); |
|
} |
|
} |
|
|
|
switch (s->transform_type) { |
|
case DI: |
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_S16P: |
|
s->filter = biquad_s16; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
s->filter = biquad_s32; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
s->filter = biquad_flt; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
s->filter = biquad_dbl; |
|
break; |
|
default: av_assert0(0); |
|
} |
|
break; |
|
case DII: |
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_S16P: |
|
s->filter = biquad_dii_s16; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
s->filter = biquad_dii_s32; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
s->filter = biquad_dii_flt; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
s->filter = biquad_dii_dbl; |
|
break; |
|
default: av_assert0(0); |
|
} |
|
break; |
|
case TDI: |
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_S16P: |
|
s->filter = biquad_tdi_s16; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
s->filter = biquad_tdi_s32; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
s->filter = biquad_tdi_flt; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
s->filter = biquad_tdi_dbl; |
|
break; |
|
default: av_assert0(0); |
|
} |
|
break; |
|
case TDII: |
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_S16P: |
|
s->filter = biquad_tdii_s16; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
s->filter = biquad_tdii_s32; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
s->filter = biquad_tdii_flt; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
s->filter = biquad_tdii_dbl; |
|
break; |
|
default: av_assert0(0); |
|
} |
|
break; |
|
case LATT: |
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_S16P: |
|
s->filter = biquad_latt_s16; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
s->filter = biquad_latt_s32; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
s->filter = biquad_latt_flt; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
s->filter = biquad_latt_dbl; |
|
break; |
|
default: av_assert0(0); |
|
} |
|
break; |
|
case SVF: |
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_S16P: |
|
s->filter = biquad_svf_s16; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
s->filter = biquad_svf_s32; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
s->filter = biquad_svf_flt; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
s->filter = biquad_svf_dbl; |
|
break; |
|
default: av_assert0(0); |
|
} |
|
break; |
|
case ZDF: |
|
switch (inlink->format) { |
|
case AV_SAMPLE_FMT_S16P: |
|
s->filter = biquad_zdf_s16; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
s->filter = biquad_zdf_s32; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
s->filter = biquad_zdf_flt; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
s->filter = biquad_zdf_dbl; |
|
break; |
|
default: av_assert0(0); |
|
} |
|
break; |
|
default: |
|
av_assert0(0); |
|
} |
|
|
|
s->block_align = av_get_bytes_per_sample(inlink->format); |
|
|
|
if (s->transform_type == LATT) |
|
convert_dir2latt(s); |
|
else if (s->transform_type == SVF) |
|
convert_dir2svf(s); |
|
else if (s->transform_type == ZDF) |
|
convert_dir2zdf(s, inlink->sample_rate); |
|
|
|
s->a_float[0] = s->a_double[0]; |
|
s->a_float[1] = s->a_double[1]; |
|
s->a_float[2] = s->a_double[2]; |
|
s->b_float[0] = s->b_double[0]; |
|
s->b_float[1] = s->b_double[1]; |
|
s->b_float[2] = s->b_double[2]; |
|
|
|
return 0; |
|
} |
|
|
|
static int config_output(AVFilterLink *outlink) |
|
{ |
|
return config_filter(outlink, 1); |
|
} |
|
|
|
typedef struct ThreadData { |
|
AVFrame *in, *out; |
|
int eof; |
|
} ThreadData; |
|
|
|
static void reverse_samples(AVFrame *out, AVFrame *in, int p, |
|
int oo, int io, int nb_samples) |
|
{ |
|
switch (out->format) { |
|
case AV_SAMPLE_FMT_S16P: { |
|
const int16_t *src = ((const int16_t *)in->extended_data[p]) + io; |
|
int16_t *dst = ((int16_t *)out->extended_data[p]) + oo; |
|
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
|
dst[i] = src[j]; |
|
} |
|
break; |
|
case AV_SAMPLE_FMT_S32P: { |
|
const int32_t *src = ((const int32_t *)in->extended_data[p]) + io; |
|
int32_t *dst = ((int32_t *)out->extended_data[p]) + oo; |
|
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
|
dst[i] = src[j]; |
|
} |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: { |
|
const float *src = ((const float *)in->extended_data[p]) + io; |
|
float *dst = ((float *)out->extended_data[p]) + oo; |
|
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
|
dst[i] = src[j]; |
|
} |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: { |
|
const double *src = ((const double *)in->extended_data[p]) + io; |
|
double *dst = ((double *)out->extended_data[p]) + oo; |
|
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
|
dst[i] = src[j]; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
{ |
|
AVFilterLink *inlink = ctx->inputs[0]; |
|
ThreadData *td = arg; |
|
AVFrame *buf = td->in; |
|
AVFrame *out_buf = td->out; |
|
BiquadsContext *s = ctx->priv; |
|
const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs; |
|
const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; |
|
int ch; |
|
|
|
for (ch = start; ch < end; ch++) { |
|
enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); |
|
|
|
if (av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0) { |
|
if (buf != out_buf) |
|
memcpy(out_buf->extended_data[ch], buf->extended_data[ch], |
|
buf->nb_samples * s->block_align); |
|
continue; |
|
} |
|
|
|
if (!s->block_samples) { |
|
s->filter(s, buf->extended_data[ch], out_buf->extended_data[ch], buf->nb_samples, |
|
s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled); |
|
} else if (td->eof) { |
|
memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch] + s->block_align * s->block_samples, |
|
s->nb_samples * s->block_align); |
|
} else { |
|
memcpy(s->block[0]->extended_data[ch] + s->block_align * s->block_samples, buf->extended_data[ch], |
|
buf->nb_samples * s->block_align); |
|
memset(s->block[0]->extended_data[ch] + s->block_align * (s->block_samples + buf->nb_samples), |
|
0, (s->block_samples - buf->nb_samples) * s->block_align); |
|
s->filter(s, s->block[0]->extended_data[ch], s->block[1]->extended_data[ch], s->block_samples, |
|
s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled); |
|
av_samples_copy(s->cache[1]->extended_data, s->cache[0]->extended_data, 0, 0, |
|
s->cache[0]->nb_samples, s->cache[0]->ch_layout.nb_channels, |
|
s->cache[0]->format); |
|
s->filter(s, s->block[0]->extended_data[ch] + s->block_samples * s->block_align, |
|
s->block[1]->extended_data[ch] + s->block_samples * s->block_align, |
|
s->block_samples, s->cache[1]->extended_data[ch], s->clip+ch, |
|
ctx->is_disabled); |
|
reverse_samples(s->block[2], s->block[1], ch, 0, 0, 2 * s->block_samples); |
|
av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples, |
|
s->cache[1]->ch_layout.nb_channels, s->cache[1]->format); |
|
s->filter(s, s->block[2]->extended_data[ch], s->block[2]->extended_data[ch], 2 * s->block_samples, |
|
s->cache[1]->extended_data[ch], s->clip+ch, ctx->is_disabled); |
|
reverse_samples(s->block[1], s->block[2], ch, 0, 0, 2 * s->block_samples); |
|
memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch], |
|
s->block_samples * s->block_align); |
|
memmove(s->block[0]->extended_data[ch], s->block[0]->extended_data[ch] + s->block_align * s->block_samples, |
|
s->block_samples * s->block_align); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *buf, int eof) |
|
{ |
|
AVFilterContext *ctx = inlink->dst; |
|
BiquadsContext *s = ctx->priv; |
|
AVFilterLink *outlink = ctx->outputs[0]; |
|
AVFrame *out_buf; |
|
ThreadData td; |
|
int ch, ret, drop = 0; |
|
|
|
if (s->bypass) |
|
return ff_filter_frame(outlink, buf); |
|
|
|
ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout); |
|
if (ret < 0) { |
|
av_frame_free(&buf); |
|
return ret; |
|
} |
|
if (strcmp(s->ch_layout_str, "all")) |
|
av_channel_layout_from_string(&s->ch_layout, |
|
s->ch_layout_str); |
|
|
|
if (av_frame_is_writable(buf) && s->block_samples == 0) { |
|
out_buf = buf; |
|
} else { |
|
out_buf = ff_get_audio_buffer(outlink, s->block_samples > 0 ? s->block_samples : buf->nb_samples); |
|
if (!out_buf) { |
|
av_frame_free(&buf); |
|
return AVERROR(ENOMEM); |
|
} |
|
av_frame_copy_props(out_buf, buf); |
|
} |
|
|
|
if (s->block_samples > 0 && s->pts == AV_NOPTS_VALUE) |
|
drop = 1; |
|
td.in = buf; |
|
td.out = out_buf; |
|
td.eof = eof; |
|
ff_filter_execute(ctx, filter_channel, &td, NULL, |
|
FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); |
|
|
|
for (ch = 0; ch < outlink->ch_layout.nb_channels; ch++) { |
|
if (s->clip[ch] > 0) |
|
av_log(ctx, AV_LOG_WARNING, "Channel %d clipping %d times. Please reduce gain.\n", |
|
ch, s->clip[ch]); |
|
s->clip[ch] = 0; |
|
} |
|
|
|
if (s->block_samples > 0) { |
|
int nb_samples = buf->nb_samples; |
|
int64_t pts = buf->pts; |
|
|
|
out_buf->pts = s->pts; |
|
out_buf->nb_samples = s->nb_samples; |
|
s->pts = pts; |
|
s->nb_samples = nb_samples; |
|
} |
|
|
|
if (buf != out_buf) |
|
av_frame_free(&buf); |
|
|
|
if (!drop) |
|
return ff_filter_frame(outlink, out_buf); |
|
else { |
|
av_frame_free(&out_buf); |
|
ff_filter_set_ready(ctx, 10); |
|
return 0; |
|
} |
|
} |
|
|
|
static int activate(AVFilterContext *ctx) |
|
{ |
|
AVFilterLink *inlink = ctx->inputs[0]; |
|
AVFilterLink *outlink = ctx->outputs[0]; |
|
BiquadsContext *s = ctx->priv; |
|
AVFrame *in = NULL; |
|
int64_t pts; |
|
int status; |
|
int ret; |
|
|
|
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); |
|
|
|
if (s->block_samples > 0) { |
|
ret = ff_inlink_consume_samples(inlink, s->block_samples, s->block_samples, &in); |
|
} else { |
|
ret = ff_inlink_consume_frame(inlink, &in); |
|
} |
|
if (ret < 0) |
|
return ret; |
|
if (ret > 0) |
|
return filter_frame(inlink, in, 0); |
|
|
|
if (s->block_samples > 0 && ff_inlink_queued_samples(inlink) >= s->block_samples) { |
|
ff_filter_set_ready(ctx, 10); |
|
return 0; |
|
} |
|
|
|
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { |
|
if (s->block_samples > 0) { |
|
AVFrame *in = ff_get_audio_buffer(outlink, s->block_samples); |
|
if (!in) |
|
return AVERROR(ENOMEM); |
|
|
|
ret = filter_frame(inlink, in, 1); |
|
} |
|
|
|
ff_outlink_set_status(outlink, status, pts); |
|
|
|
return ret; |
|
} |
|
|
|
FF_FILTER_FORWARD_WANTED(outlink, inlink); |
|
|
|
return FFERROR_NOT_READY; |
|
} |
|
|
|
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, |
|
char *res, int res_len, int flags) |
|
{ |
|
AVFilterLink *outlink = ctx->outputs[0]; |
|
int ret; |
|
|
|
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return config_filter(outlink, 0); |
|
} |
|
|
|
static av_cold void uninit(AVFilterContext *ctx) |
|
{ |
|
BiquadsContext *s = ctx->priv; |
|
|
|
for (int i = 0; i < 3; i++) |
|
av_frame_free(&s->block[i]); |
|
av_frame_free(&s->cache[0]); |
|
av_frame_free(&s->cache[1]); |
|
av_freep(&s->clip); |
|
av_channel_layout_uninit(&s->ch_layout); |
|
} |
|
|
|
static const AVFilterPad outputs[] = { |
|
{ |
|
.name = "default", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.config_props = config_output, |
|
}, |
|
}; |
|
|
|
#define OFFSET(x) offsetof(BiquadsContext, x) |
|
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
|
#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
|
|
|
#define DEFINE_BIQUAD_FILTER_2(name_, description_, priv_class_) \ |
|
static av_cold int name_##_init(AVFilterContext *ctx) \ |
|
{ \ |
|
BiquadsContext *s = ctx->priv; \ |
|
s->filter_type = name_; \ |
|
s->pts = AV_NOPTS_VALUE; \ |
|
return 0; \ |
|
} \ |
|
\ |
|
const AVFilter ff_af_##name_ = { \ |
|
.name = #name_, \ |
|
.description = NULL_IF_CONFIG_SMALL(description_), \ |
|
.priv_class = &priv_class_##_class, \ |
|
.priv_size = sizeof(BiquadsContext), \ |
|
.init = name_##_init, \ |
|
.activate = activate, \ |
|
.uninit = uninit, \ |
|
FILTER_INPUTS(ff_audio_default_filterpad), \ |
|
FILTER_OUTPUTS(outputs), \ |
|
FILTER_QUERY_FUNC(query_formats), \ |
|
.process_command = process_command, \ |
|
.flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, \ |
|
} |
|
|
|
#define DEFINE_BIQUAD_FILTER(name, description) \ |
|
AVFILTER_DEFINE_CLASS(name); \ |
|
DEFINE_BIQUAD_FILTER_2(name, description, name) |
|
|
|
#define WIDTH_OPTION(x) \ |
|
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS}, \ |
|
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS} |
|
|
|
#define WIDTH_TYPE_OPTION(x) \ |
|
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"}, \ |
|
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"}, \ |
|
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"}, \ |
|
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"}, \ |
|
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"}, \ |
|
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"}, \ |
|
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"} |
|
|
|
#define MIX_CHANNELS_NORMALIZE_OPTION(x, y, z) \ |
|
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \ |
|
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \ |
|
{"channels", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \ |
|
{"c", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \ |
|
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS}, \ |
|
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS} |
|
|
|
#define TRANSFORM_OPTION(x) \ |
|
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, "transform_type"}, \ |
|
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, "transform_type"}, \ |
|
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"}, \ |
|
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"}, \ |
|
{"tdi", "transposed direct form I", 0, AV_OPT_TYPE_CONST, {.i64=TDI}, 0, 0, AF, "transform_type"}, \ |
|
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"}, \ |
|
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"}, \ |
|
{"svf", "state variable filter form", 0, AV_OPT_TYPE_CONST, {.i64=SVF}, 0, 0, AF, "transform_type"}, \ |
|
{"zdf", "zero-delay filter form", 0, AV_OPT_TYPE_CONST, {.i64=ZDF}, 0, 0, AF, "transform_type"} |
|
|
|
#define PRECISION_OPTION(x) \ |
|
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, "precision"}, \ |
|
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, "precision"}, \ |
|
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"}, \ |
|
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"}, \ |
|
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"}, \ |
|
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"}, \ |
|
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"} |
|
|
|
#define BLOCKSIZE_OPTION(x) \ |
|
{"blocksize", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF}, \ |
|
{"b", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF} |
|
|
|
#if CONFIG_EQUALIZER_FILTER |
|
static const AVOption equalizer_options[] = { |
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS}, |
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(1.0), |
|
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
|
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter."); |
|
#endif |
|
#if CONFIG_BASS_FILTER || CONFIG_LOWSHELF_FILTER |
|
static const AVOption bass_lowshelf_options[] = { |
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS}, |
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(0.5), |
|
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
|
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
AVFILTER_DEFINE_CLASS_EXT(bass_lowshelf, "bass/lowshelf", bass_lowshelf_options); |
|
#if CONFIG_BASS_FILTER |
|
DEFINE_BIQUAD_FILTER_2(bass, "Boost or cut lower frequencies.", bass_lowshelf); |
|
#endif |
|
|
|
#if CONFIG_LOWSHELF_FILTER |
|
DEFINE_BIQUAD_FILTER_2(lowshelf, "Apply a low shelf filter.", bass_lowshelf); |
|
#endif |
|
#endif |
|
#if CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER || CONFIG_TILTSHELF_FILTER |
|
static const AVOption treble_highshelf_options[] = { |
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(0.5), |
|
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
|
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
AVFILTER_DEFINE_CLASS_EXT(treble_highshelf, "treble/high/tiltshelf", |
|
treble_highshelf_options); |
|
|
|
#if CONFIG_TREBLE_FILTER |
|
DEFINE_BIQUAD_FILTER_2(treble, "Boost or cut upper frequencies.", treble_highshelf); |
|
#endif |
|
|
|
#if CONFIG_HIGHSHELF_FILTER |
|
DEFINE_BIQUAD_FILTER_2(highshelf, "Apply a high shelf filter.", treble_highshelf); |
|
#endif |
|
|
|
#if CONFIG_TILTSHELF_FILTER |
|
DEFINE_BIQUAD_FILTER_2(tiltshelf, "Apply a tilt shelf filter.", treble_highshelf); |
|
#endif |
|
#endif |
|
|
|
#if CONFIG_BANDPASS_FILTER |
|
static const AVOption bandpass_options[] = { |
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(0.5), |
|
{"csg", "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS}, |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter."); |
|
#endif |
|
#if CONFIG_BANDREJECT_FILTER |
|
static const AVOption bandreject_options[] = { |
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(0.5), |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter."); |
|
#endif |
|
#if CONFIG_LOWPASS_FILTER |
|
static const AVOption lowpass_options[] = { |
|
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS}, |
|
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(0.707), |
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency."); |
|
#endif |
|
#if CONFIG_HIGHPASS_FILTER |
|
static const AVOption highpass_options[] = { |
|
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(0.707), |
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency."); |
|
#endif |
|
#if CONFIG_ALLPASS_FILTER |
|
static const AVOption allpass_options[] = { |
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
|
WIDTH_TYPE_OPTION(QFACTOR), |
|
WIDTH_OPTION(0.707), |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
{"order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS}, |
|
{"o", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS}, |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
{NULL} |
|
}; |
|
|
|
DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter."); |
|
#endif |
|
#if CONFIG_BIQUAD_FILTER |
|
static const AVOption biquad_options[] = { |
|
{"a0", NULL, OFFSET(oa[0]), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT32_MIN, INT32_MAX, FLAGS}, |
|
{"a1", NULL, OFFSET(oa[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
|
{"a2", NULL, OFFSET(oa[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
|
{"b0", NULL, OFFSET(ob[0]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
|
{"b1", NULL, OFFSET(ob[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
|
{"b2", NULL, OFFSET(ob[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
|
TRANSFORM_OPTION(DI), |
|
PRECISION_OPTION(-1), |
|
BLOCKSIZE_OPTION(0), |
|
{NULL} |
|
}; |
|
|
|
DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients."); |
|
#endif |
|
|