|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/opt.h" |
|
#include "libavutil/tx.h" |
|
|
|
#include "audio.h" |
|
#include "avfilter.h" |
|
#include "filters.h" |
|
#include "formats.h" |
|
#include "internal.h" |
|
|
|
typedef struct SincContext { |
|
const AVClass *class; |
|
|
|
int sample_rate, nb_samples; |
|
float att, beta, phase, Fc0, Fc1, tbw0, tbw1; |
|
int num_taps[2]; |
|
int round; |
|
|
|
int n, rdft_len; |
|
float *coeffs; |
|
int64_t pts; |
|
|
|
AVTXContext *tx, *itx; |
|
av_tx_fn tx_fn, itx_fn; |
|
} SincContext; |
|
|
|
static int activate(AVFilterContext *ctx) |
|
{ |
|
AVFilterLink *outlink = ctx->outputs[0]; |
|
SincContext *s = ctx->priv; |
|
const float *coeffs = s->coeffs; |
|
AVFrame *frame = NULL; |
|
int nb_samples; |
|
|
|
if (!ff_outlink_frame_wanted(outlink)) |
|
return FFERROR_NOT_READY; |
|
|
|
nb_samples = FFMIN(s->nb_samples, s->n - s->pts); |
|
if (nb_samples <= 0) { |
|
ff_outlink_set_status(outlink, AVERROR_EOF, s->pts); |
|
return 0; |
|
} |
|
|
|
if (!(frame = ff_get_audio_buffer(outlink, nb_samples))) |
|
return AVERROR(ENOMEM); |
|
|
|
memcpy(frame->data[0], coeffs + s->pts, nb_samples * sizeof(float)); |
|
|
|
frame->pts = s->pts; |
|
s->pts += nb_samples; |
|
|
|
return ff_filter_frame(outlink, frame); |
|
} |
|
|
|
static int query_formats(AVFilterContext *ctx) |
|
{ |
|
SincContext *s = ctx->priv; |
|
static const AVChannelLayout chlayouts[] = { AV_CHANNEL_LAYOUT_MONO, { 0 } }; |
|
int sample_rates[] = { s->sample_rate, -1 }; |
|
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT, |
|
AV_SAMPLE_FMT_NONE }; |
|
int ret = ff_set_common_formats_from_list(ctx, sample_fmts); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = ff_set_common_channel_layouts_from_list(ctx, chlayouts); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return ff_set_common_samplerates_from_list(ctx, sample_rates); |
|
} |
|
|
|
static float *make_lpf(int num_taps, float Fc, float beta, float rho, |
|
float scale, int dc_norm) |
|
{ |
|
int i, m = num_taps - 1; |
|
float *h = av_calloc(num_taps, sizeof(*h)), sum = 0; |
|
float mult = scale / av_bessel_i0(beta), mult1 = 1.f / (.5f * m + rho); |
|
|
|
if (!h) |
|
return NULL; |
|
|
|
av_assert0(Fc >= 0 && Fc <= 1); |
|
|
|
for (i = 0; i <= m / 2; i++) { |
|
float z = i - .5f * m, x = z * M_PI, y = z * mult1; |
|
h[i] = x ? sinf(Fc * x) / x : Fc; |
|
sum += h[i] *= av_bessel_i0(beta * sqrtf(1.f - y * y)) * mult; |
|
if (m - i != i) { |
|
h[m - i] = h[i]; |
|
sum += h[i]; |
|
} |
|
} |
|
|
|
for (i = 0; dc_norm && i < num_taps; i++) |
|
h[i] *= scale / sum; |
|
|
|
return h; |
|
} |
|
|
|
static float kaiser_beta(float att, float tr_bw) |
|
{ |
|
if (att >= 60.f) { |
|
static const float coefs[][4] = { |
|
{-6.784957e-10, 1.02856e-05, 0.1087556, -0.8988365 + .001}, |
|
{-6.897885e-10, 1.027433e-05, 0.10876, -0.8994658 + .002}, |
|
{-1.000683e-09, 1.030092e-05, 0.1087677, -0.9007898 + .003}, |
|
{-3.654474e-10, 1.040631e-05, 0.1087085, -0.8977766 + .006}, |
|
{8.106988e-09, 6.983091e-06, 0.1091387, -0.9172048 + .015}, |
|
{9.519571e-09, 7.272678e-06, 0.1090068, -0.9140768 + .025}, |
|
{-5.626821e-09, 1.342186e-05, 0.1083999, -0.9065452 + .05}, |
|
{-9.965946e-08, 5.073548e-05, 0.1040967, -0.7672778 + .085}, |
|
{1.604808e-07, -5.856462e-05, 0.1185998, -1.34824 + .1}, |
|
{-1.511964e-07, 6.363034e-05, 0.1064627, -0.9876665 + .18}, |
|
}; |
|
float realm = logf(tr_bw / .0005f) / logf(2.f); |
|
float const *c0 = coefs[av_clip((int)realm, 0, FF_ARRAY_ELEMS(coefs) - 1)]; |
|
float const *c1 = coefs[av_clip(1 + (int)realm, 0, FF_ARRAY_ELEMS(coefs) - 1)]; |
|
float b0 = ((c0[0] * att + c0[1]) * att + c0[2]) * att + c0[3]; |
|
float b1 = ((c1[0] * att + c1[1]) * att + c1[2]) * att + c1[3]; |
|
|
|
return b0 + (b1 - b0) * (realm - (int)realm); |
|
} |
|
if (att > 50.f) |
|
return .1102f * (att - 8.7f); |
|
if (att > 20.96f) |
|
return .58417f * powf(att - 20.96f, .4f) + .07886f * (att - 20.96f); |
|
return 0; |
|
} |
|
|
|
static void kaiser_params(float att, float Fc, float tr_bw, float *beta, int *num_taps) |
|
{ |
|
*beta = *beta < 0.f ? kaiser_beta(att, tr_bw * .5f / Fc): *beta; |
|
att = att < 60.f ? (att - 7.95f) / (2.285f * M_PI * 2.f) : |
|
((.0007528358f-1.577737e-05 * *beta) * *beta + 0.6248022f) * *beta + .06186902f; |
|
*num_taps = !*num_taps ? ceilf(att/tr_bw + 1) : *num_taps; |
|
} |
|
|
|
static float *lpf(float Fn, float Fc, float tbw, int *num_taps, float att, float *beta, int round) |
|
{ |
|
int n = *num_taps; |
|
|
|
if ((Fc /= Fn) <= 0.f || Fc >= 1.f) { |
|
*num_taps = 0; |
|
return NULL; |
|
} |
|
|
|
att = att ? att : 120.f; |
|
|
|
kaiser_params(att, Fc, (tbw ? tbw / Fn : .05f) * .5f, beta, num_taps); |
|
|
|
if (!n) { |
|
n = *num_taps; |
|
*num_taps = av_clip(n, 11, 32767); |
|
if (round) |
|
*num_taps = 1 + 2 * (int)((int)((*num_taps / 2) * Fc + .5f) / Fc + .5f); |
|
} |
|
|
|
return make_lpf(*num_taps |= 1, Fc, *beta, 0.f, 1.f, 0); |
|
} |
|
|
|
static void invert(float *h, int n) |
|
{ |
|
for (int i = 0; i < n; i++) |
|
h[i] = -h[i]; |
|
|
|
h[(n - 1) / 2] += 1; |
|
} |
|
|
|
#define SQR(a) ((a) * (a)) |
|
|
|
static float safe_log(float x) |
|
{ |
|
av_assert0(x >= 0); |
|
if (x) |
|
return logf(x); |
|
return -26; |
|
} |
|
|
|
static int fir_to_phase(SincContext *s, float **h, int *len, int *post_len, float phase) |
|
{ |
|
float *pi_wraps, *work, phase1 = (phase > 50.f ? 100.f - phase : phase) / 50.f; |
|
int i, work_len, begin, end, imp_peak = 0, peak = 0, ret; |
|
float imp_sum = 0, peak_imp_sum = 0, scale = 1.f; |
|
float prev_angle2 = 0, cum_2pi = 0, prev_angle1 = 0, cum_1pi = 0; |
|
|
|
for (i = *len, work_len = 2 * 2 * 8; i > 1; work_len <<= 1, i >>= 1); |
|
|
|
|
|
work = av_calloc((work_len + 2) + (work_len / 2 + 1), sizeof(float)); |
|
if (!work) |
|
return AVERROR(ENOMEM); |
|
pi_wraps = &work[work_len + 2]; |
|
|
|
memcpy(work, *h, *len * sizeof(*work)); |
|
|
|
av_tx_uninit(&s->tx); |
|
av_tx_uninit(&s->itx); |
|
ret = av_tx_init(&s->tx, &s->tx_fn, AV_TX_FLOAT_RDFT, 0, work_len, &scale, AV_TX_INPLACE); |
|
if (ret < 0) |
|
goto fail; |
|
ret = av_tx_init(&s->itx, &s->itx_fn, AV_TX_FLOAT_RDFT, 1, work_len, &scale, AV_TX_INPLACE); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
s->tx_fn(s->tx, work, work, sizeof(float)); |
|
|
|
for (i = 0; i <= work_len; i += 2) { |
|
float angle = atan2f(work[i + 1], work[i]); |
|
float detect = 2 * M_PI; |
|
float delta = angle - prev_angle2; |
|
float adjust = detect * ((delta < -detect * .7f) - (delta > detect * .7f)); |
|
|
|
prev_angle2 = angle; |
|
cum_2pi += adjust; |
|
angle += cum_2pi; |
|
detect = M_PI; |
|
delta = angle - prev_angle1; |
|
adjust = detect * ((delta < -detect * .7f) - (delta > detect * .7f)); |
|
prev_angle1 = angle; |
|
cum_1pi += fabsf(adjust); |
|
pi_wraps[i >> 1] = cum_1pi; |
|
|
|
work[i] = safe_log(sqrtf(SQR(work[i]) + SQR(work[i + 1]))); |
|
work[i + 1] = 0; |
|
} |
|
|
|
s->itx_fn(s->itx, work, work, sizeof(AVComplexFloat)); |
|
|
|
for (i = 0; i < work_len; i++) |
|
work[i] *= 2.f / work_len; |
|
|
|
for (i = 1; i < work_len / 2; i++) { |
|
work[i] *= 2; |
|
work[i + work_len / 2] = 0; |
|
} |
|
s->tx_fn(s->tx, work, work, sizeof(float)); |
|
|
|
for (i = 2; i < work_len; i += 2) |
|
work[i + 1] = phase1 * i / work_len * pi_wraps[work_len >> 1] + (1 - phase1) * (work[i + 1] + pi_wraps[i >> 1]) - pi_wraps[i >> 1]; |
|
|
|
work[0] = exp(work[0]); |
|
work[1] = exp(work[1]); |
|
for (i = 2; i < work_len; i += 2) { |
|
float x = expf(work[i]); |
|
|
|
work[i ] = x * cosf(work[i + 1]); |
|
work[i + 1] = x * sinf(work[i + 1]); |
|
} |
|
|
|
s->itx_fn(s->itx, work, work, sizeof(AVComplexFloat)); |
|
for (i = 0; i < work_len; i++) |
|
work[i] *= 2.f / work_len; |
|
|
|
|
|
for (i = 0; i <= (int) (pi_wraps[work_len >> 1] / M_PI + .5f); i++) { |
|
imp_sum += work[i]; |
|
if (fabs(imp_sum) > fabs(peak_imp_sum)) { |
|
peak_imp_sum = imp_sum; |
|
peak = i; |
|
} |
|
if (work[i] > work[imp_peak]) |
|
imp_peak = i; |
|
} |
|
|
|
while (peak && fabsf(work[peak - 1]) > fabsf(work[peak]) && (work[peak - 1] * work[peak] > 0)) { |
|
peak--; |
|
} |
|
|
|
if (!phase1) { |
|
begin = 0; |
|
} else if (phase1 == 1) { |
|
begin = peak - *len / 2; |
|
} else { |
|
begin = (.997f - (2 - phase1) * .22f) * *len + .5f; |
|
end = (.997f + (0 - phase1) * .22f) * *len + .5f; |
|
begin = peak - (begin & ~3); |
|
end = peak + 1 + ((end + 3) & ~3); |
|
*len = end - begin; |
|
*h = av_realloc_f(*h, *len, sizeof(**h)); |
|
if (!*h) { |
|
av_free(work); |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
for (i = 0; i < *len; i++) { |
|
(*h)[i] = work[(begin + (phase > 50.f ? *len - 1 - i : i) + work_len) & (work_len - 1)]; |
|
} |
|
*post_len = phase > 50 ? peak - begin : begin + *len - (peak + 1); |
|
|
|
av_log(s, AV_LOG_DEBUG, "%d nPI=%g peak-sum@%i=%g (val@%i=%g); len=%i post=%i (%g%%)\n", |
|
work_len, pi_wraps[work_len >> 1] / M_PI, peak, peak_imp_sum, imp_peak, |
|
work[imp_peak], *len, *post_len, 100.f - 100.f * *post_len / (*len - 1)); |
|
|
|
fail: |
|
av_free(work); |
|
|
|
return ret; |
|
} |
|
|
|
static int config_output(AVFilterLink *outlink) |
|
{ |
|
AVFilterContext *ctx = outlink->src; |
|
SincContext *s = ctx->priv; |
|
float Fn = s->sample_rate * .5f; |
|
float *h[2]; |
|
int i, n, post_peak, longer; |
|
|
|
outlink->sample_rate = s->sample_rate; |
|
s->pts = 0; |
|
|
|
if (s->Fc0 >= Fn || s->Fc1 >= Fn) { |
|
av_log(ctx, AV_LOG_ERROR, |
|
"filter frequency must be less than %d/2.\n", s->sample_rate); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
h[0] = lpf(Fn, s->Fc0, s->tbw0, &s->num_taps[0], s->att, &s->beta, s->round); |
|
h[1] = lpf(Fn, s->Fc1, s->tbw1, &s->num_taps[1], s->att, &s->beta, s->round); |
|
|
|
if (h[0]) |
|
invert(h[0], s->num_taps[0]); |
|
|
|
longer = s->num_taps[1] > s->num_taps[0]; |
|
n = s->num_taps[longer]; |
|
|
|
if (h[0] && h[1]) { |
|
for (i = 0; i < s->num_taps[!longer]; i++) |
|
h[longer][i + (n - s->num_taps[!longer]) / 2] += h[!longer][i]; |
|
|
|
if (s->Fc0 < s->Fc1) |
|
invert(h[longer], n); |
|
|
|
av_free(h[!longer]); |
|
} |
|
|
|
if (s->phase != 50.f) { |
|
int ret = fir_to_phase(s, &h[longer], &n, &post_peak, s->phase); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
post_peak = n >> 1; |
|
} |
|
|
|
s->n = 1 << (av_log2(n) + 1); |
|
s->rdft_len = 1 << av_log2(n); |
|
s->coeffs = av_calloc(s->n, sizeof(*s->coeffs)); |
|
if (!s->coeffs) |
|
return AVERROR(ENOMEM); |
|
|
|
for (i = 0; i < n; i++) |
|
s->coeffs[i] = h[longer][i]; |
|
av_free(h[longer]); |
|
|
|
av_tx_uninit(&s->tx); |
|
av_tx_uninit(&s->itx); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold void uninit(AVFilterContext *ctx) |
|
{ |
|
SincContext *s = ctx->priv; |
|
|
|
av_freep(&s->coeffs); |
|
av_tx_uninit(&s->tx); |
|
av_tx_uninit(&s->itx); |
|
} |
|
|
|
static const AVFilterPad sinc_outputs[] = { |
|
{ |
|
.name = "default", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.config_props = config_output, |
|
}, |
|
}; |
|
|
|
#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
|
#define OFFSET(x) offsetof(SincContext, x) |
|
|
|
static const AVOption sinc_options[] = { |
|
{ "sample_rate", "set sample rate", OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64=44100}, 1, INT_MAX, AF }, |
|
{ "r", "set sample rate", OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64=44100}, 1, INT_MAX, AF }, |
|
{ "nb_samples", "set the number of samples per requested frame", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64=1024}, 1, INT_MAX, AF }, |
|
{ "n", "set the number of samples per requested frame", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64=1024}, 1, INT_MAX, AF }, |
|
{ "hp", "set high-pass filter frequency", OFFSET(Fc0), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, INT_MAX, AF }, |
|
{ "lp", "set low-pass filter frequency", OFFSET(Fc1), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, INT_MAX, AF }, |
|
{ "phase", "set filter phase response", OFFSET(phase), AV_OPT_TYPE_FLOAT, {.dbl=50}, 0, 100, AF }, |
|
{ "beta", "set kaiser window beta", OFFSET(beta), AV_OPT_TYPE_FLOAT, {.dbl=-1}, -1, 256, AF }, |
|
{ "att", "set stop-band attenuation", OFFSET(att), AV_OPT_TYPE_FLOAT, {.dbl=120}, 40, 180, AF }, |
|
{ "round", "enable rounding", OFFSET(round), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, AF }, |
|
{ "hptaps", "set number of taps for high-pass filter", OFFSET(num_taps[0]), AV_OPT_TYPE_INT, {.i64=0}, 0, 32768, AF }, |
|
{ "lptaps", "set number of taps for low-pass filter", OFFSET(num_taps[1]), AV_OPT_TYPE_INT, {.i64=0}, 0, 32768, AF }, |
|
{ NULL } |
|
}; |
|
|
|
AVFILTER_DEFINE_CLASS(sinc); |
|
|
|
const AVFilter ff_asrc_sinc = { |
|
.name = "sinc", |
|
.description = NULL_IF_CONFIG_SMALL("Generate a sinc kaiser-windowed low-pass, high-pass, band-pass, or band-reject FIR coefficients."), |
|
.priv_size = sizeof(SincContext), |
|
.priv_class = &sinc_class, |
|
.uninit = uninit, |
|
.activate = activate, |
|
.inputs = NULL, |
|
FILTER_OUTPUTS(sinc_outputs), |
|
FILTER_QUERY_FUNC(query_formats), |
|
}; |
|
|