|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "libavutil/common.h" |
|
#include "libavutil/avassert.h" |
|
|
|
#include "transform.h" |
|
|
|
#define INTERPOLATE_METHOD(name) \ |
|
static uint8_t name(float x, float y, const uint8_t *src, \ |
|
int width, int height, int stride, uint8_t def) |
|
|
|
#define PIXEL(img, x, y, w, h, stride, def) \ |
|
((x) < 0 || (y) < 0) ? (def) : \ |
|
(((x) >= (w) || (y) >= (h)) ? (def) : \ |
|
img[(x) + (y) * (stride)]) |
|
|
|
|
|
|
|
|
|
INTERPOLATE_METHOD(interpolate_nearest) |
|
{ |
|
return PIXEL(src, (int)(x + 0.5), (int)(y + 0.5), width, height, stride, def); |
|
} |
|
|
|
|
|
|
|
|
|
INTERPOLATE_METHOD(interpolate_bilinear) |
|
{ |
|
int x_c, x_f, y_c, y_f; |
|
int v1, v2, v3, v4; |
|
|
|
if (x < -1 || x > width || y < -1 || y > height) { |
|
return def; |
|
} else { |
|
x_f = (int)x; |
|
x_c = x_f + 1; |
|
|
|
y_f = (int)y; |
|
y_c = y_f + 1; |
|
|
|
v1 = PIXEL(src, x_c, y_c, width, height, stride, def); |
|
v2 = PIXEL(src, x_c, y_f, width, height, stride, def); |
|
v3 = PIXEL(src, x_f, y_c, width, height, stride, def); |
|
v4 = PIXEL(src, x_f, y_f, width, height, stride, def); |
|
|
|
return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) + |
|
v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y))); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
INTERPOLATE_METHOD(interpolate_biquadratic) |
|
{ |
|
int x_c, x_f, y_c, y_f; |
|
uint8_t v1, v2, v3, v4; |
|
float f1, f2, f3, f4; |
|
|
|
if (x < - 1 || x > width || y < -1 || y > height) |
|
return def; |
|
else { |
|
x_f = (int)x; |
|
x_c = x_f + 1; |
|
y_f = (int)y; |
|
y_c = y_f + 1; |
|
|
|
v1 = PIXEL(src, x_c, y_c, width, height, stride, def); |
|
v2 = PIXEL(src, x_c, y_f, width, height, stride, def); |
|
v3 = PIXEL(src, x_f, y_c, width, height, stride, def); |
|
v4 = PIXEL(src, x_f, y_f, width, height, stride, def); |
|
|
|
f1 = 1 - sqrt((x_c - x) * (y_c - y)); |
|
f2 = 1 - sqrt((x_c - x) * (y - y_f)); |
|
f3 = 1 - sqrt((x - x_f) * (y_c - y)); |
|
f4 = 1 - sqrt((x - x_f) * (y - y_f)); |
|
return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4); |
|
} |
|
} |
|
|
|
void ff_get_matrix( |
|
float x_shift, |
|
float y_shift, |
|
float angle, |
|
float scale_x, |
|
float scale_y, |
|
float *matrix |
|
) { |
|
matrix[0] = scale_x * cos(angle); |
|
matrix[1] = -sin(angle); |
|
matrix[2] = x_shift; |
|
matrix[3] = -matrix[1]; |
|
matrix[4] = scale_y * cos(angle); |
|
matrix[5] = y_shift; |
|
matrix[6] = 0; |
|
matrix[7] = 0; |
|
matrix[8] = 1; |
|
} |
|
|
|
int ff_affine_transform(const uint8_t *src, uint8_t *dst, |
|
int src_stride, int dst_stride, |
|
int width, int height, const float *matrix, |
|
enum InterpolateMethod interpolate, |
|
enum FillMethod fill) |
|
{ |
|
int x, y; |
|
float x_s, y_s; |
|
uint8_t def = 0; |
|
uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL; |
|
|
|
switch(interpolate) { |
|
case INTERPOLATE_NEAREST: |
|
func = interpolate_nearest; |
|
break; |
|
case INTERPOLATE_BILINEAR: |
|
func = interpolate_bilinear; |
|
break; |
|
case INTERPOLATE_BIQUADRATIC: |
|
func = interpolate_biquadratic; |
|
break; |
|
default: |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
for (y = 0; y < height; y++) { |
|
for(x = 0; x < width; x++) { |
|
x_s = x * matrix[0] + y * matrix[1] + matrix[2]; |
|
y_s = x * matrix[3] + y * matrix[4] + matrix[5]; |
|
|
|
switch(fill) { |
|
case FILL_ORIGINAL: |
|
def = src[y * src_stride + x]; |
|
break; |
|
case FILL_CLAMP: |
|
y_s = av_clipf(y_s, 0, height - 1); |
|
x_s = av_clipf(x_s, 0, width - 1); |
|
def = src[(int)y_s * src_stride + (int)x_s]; |
|
break; |
|
case FILL_MIRROR: |
|
x_s = avpriv_mirror(x_s, width-1); |
|
y_s = avpriv_mirror(y_s, height-1); |
|
|
|
av_assert2(x_s >= 0 && y_s >= 0); |
|
av_assert2(x_s < width && y_s < height); |
|
def = src[(int)y_s * src_stride + (int)x_s]; |
|
} |
|
|
|
dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def); |
|
} |
|
} |
|
return 0; |
|
} |
|
|