|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "libavutil/file_open.h" |
|
#include "libavutil/opt.h" |
|
#include "filters.h" |
|
#include "dnn_filter_common.h" |
|
#include "internal.h" |
|
#include "video.h" |
|
#include "libavutil/time.h" |
|
#include "libavutil/avstring.h" |
|
#include "libavutil/detection_bbox.h" |
|
|
|
typedef struct DnnDetectContext { |
|
const AVClass *class; |
|
DnnContext dnnctx; |
|
float confidence; |
|
char *labels_filename; |
|
char **labels; |
|
int label_count; |
|
} DnnDetectContext; |
|
|
|
#define OFFSET(x) offsetof(DnnDetectContext, dnnctx.x) |
|
#define OFFSET2(x) offsetof(DnnDetectContext, x) |
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM |
|
static const AVOption dnn_detect_options[] = { |
|
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = DNN_OV }, INT_MIN, INT_MAX, FLAGS, "backend" }, |
|
#if (CONFIG_LIBTENSORFLOW == 1) |
|
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_TF }, 0, 0, FLAGS, "backend" }, |
|
#endif |
|
#if (CONFIG_LIBOPENVINO == 1) |
|
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_OV }, 0, 0, FLAGS, "backend" }, |
|
#endif |
|
DNN_COMMON_OPTIONS |
|
{ "confidence", "threshold of confidence", OFFSET2(confidence), AV_OPT_TYPE_FLOAT, { .dbl = 0.5 }, 0, 1, FLAGS}, |
|
{ "labels", "path to labels file", OFFSET2(labels_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, |
|
{ NULL } |
|
}; |
|
|
|
AVFILTER_DEFINE_CLASS(dnn_detect); |
|
|
|
static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx) |
|
{ |
|
DnnDetectContext *ctx = filter_ctx->priv; |
|
float conf_threshold = ctx->confidence; |
|
int proposal_count = output->height; |
|
int detect_size = output->width; |
|
float *detections = output->data; |
|
int nb_bboxes = 0; |
|
AVFrameSideData *sd; |
|
AVDetectionBBox *bbox; |
|
AVDetectionBBoxHeader *header; |
|
|
|
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES); |
|
if (sd) { |
|
av_log(filter_ctx, AV_LOG_ERROR, "already have bounding boxes in side data.\n"); |
|
return -1; |
|
} |
|
|
|
for (int i = 0; i < proposal_count; ++i) { |
|
float conf = detections[i * detect_size + 2]; |
|
if (conf < conf_threshold) { |
|
continue; |
|
} |
|
nb_bboxes++; |
|
} |
|
|
|
if (nb_bboxes == 0) { |
|
av_log(filter_ctx, AV_LOG_VERBOSE, "nothing detected in this frame.\n"); |
|
return 0; |
|
} |
|
|
|
header = av_detection_bbox_create_side_data(frame, nb_bboxes); |
|
if (!header) { |
|
av_log(filter_ctx, AV_LOG_ERROR, "failed to create side data with %d bounding boxes\n", nb_bboxes); |
|
return -1; |
|
} |
|
|
|
av_strlcpy(header->source, ctx->dnnctx.model_filename, sizeof(header->source)); |
|
|
|
for (int i = 0; i < proposal_count; ++i) { |
|
int av_unused image_id = (int)detections[i * detect_size + 0]; |
|
int label_id = (int)detections[i * detect_size + 1]; |
|
float conf = detections[i * detect_size + 2]; |
|
float x0 = detections[i * detect_size + 3]; |
|
float y0 = detections[i * detect_size + 4]; |
|
float x1 = detections[i * detect_size + 5]; |
|
float y1 = detections[i * detect_size + 6]; |
|
|
|
if (conf < conf_threshold) { |
|
continue; |
|
} |
|
|
|
bbox = av_get_detection_bbox(header, header->nb_bboxes - nb_bboxes); |
|
bbox->x = (int)(x0 * frame->width); |
|
bbox->w = (int)(x1 * frame->width) - bbox->x; |
|
bbox->y = (int)(y0 * frame->height); |
|
bbox->h = (int)(y1 * frame->height) - bbox->y; |
|
|
|
bbox->detect_confidence = av_make_q((int)(conf * 10000), 10000); |
|
bbox->classify_count = 0; |
|
|
|
if (ctx->labels && label_id < ctx->label_count) { |
|
av_strlcpy(bbox->detect_label, ctx->labels[label_id], sizeof(bbox->detect_label)); |
|
} else { |
|
snprintf(bbox->detect_label, sizeof(bbox->detect_label), "%d", label_id); |
|
} |
|
|
|
nb_bboxes--; |
|
if (nb_bboxes == 0) { |
|
break; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int dnn_detect_post_proc_tf(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx) |
|
{ |
|
DnnDetectContext *ctx = filter_ctx->priv; |
|
int proposal_count; |
|
float conf_threshold = ctx->confidence; |
|
float *conf, *position, *label_id, x0, y0, x1, y1; |
|
int nb_bboxes = 0; |
|
AVFrameSideData *sd; |
|
AVDetectionBBox *bbox; |
|
AVDetectionBBoxHeader *header; |
|
|
|
proposal_count = *(float *)(output[0].data); |
|
conf = output[1].data; |
|
position = output[3].data; |
|
label_id = output[2].data; |
|
|
|
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES); |
|
if (sd) { |
|
av_log(filter_ctx, AV_LOG_ERROR, "already have dnn bounding boxes in side data.\n"); |
|
return -1; |
|
} |
|
|
|
for (int i = 0; i < proposal_count; ++i) { |
|
if (conf[i] < conf_threshold) |
|
continue; |
|
nb_bboxes++; |
|
} |
|
|
|
if (nb_bboxes == 0) { |
|
av_log(filter_ctx, AV_LOG_VERBOSE, "nothing detected in this frame.\n"); |
|
return 0; |
|
} |
|
|
|
header = av_detection_bbox_create_side_data(frame, nb_bboxes); |
|
if (!header) { |
|
av_log(filter_ctx, AV_LOG_ERROR, "failed to create side data with %d bounding boxes\n", nb_bboxes); |
|
return -1; |
|
} |
|
|
|
av_strlcpy(header->source, ctx->dnnctx.model_filename, sizeof(header->source)); |
|
|
|
for (int i = 0; i < proposal_count; ++i) { |
|
y0 = position[i * 4]; |
|
x0 = position[i * 4 + 1]; |
|
y1 = position[i * 4 + 2]; |
|
x1 = position[i * 4 + 3]; |
|
|
|
bbox = av_get_detection_bbox(header, i); |
|
|
|
if (conf[i] < conf_threshold) { |
|
continue; |
|
} |
|
|
|
bbox->x = (int)(x0 * frame->width); |
|
bbox->w = (int)(x1 * frame->width) - bbox->x; |
|
bbox->y = (int)(y0 * frame->height); |
|
bbox->h = (int)(y1 * frame->height) - bbox->y; |
|
|
|
bbox->detect_confidence = av_make_q((int)(conf[i] * 10000), 10000); |
|
bbox->classify_count = 0; |
|
|
|
if (ctx->labels && label_id[i] < ctx->label_count) { |
|
av_strlcpy(bbox->detect_label, ctx->labels[(int)label_id[i]], sizeof(bbox->detect_label)); |
|
} else { |
|
snprintf(bbox->detect_label, sizeof(bbox->detect_label), "%d", (int)label_id[i]); |
|
} |
|
|
|
nb_bboxes--; |
|
if (nb_bboxes == 0) { |
|
break; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int dnn_detect_post_proc(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx) |
|
{ |
|
DnnDetectContext *ctx = filter_ctx->priv; |
|
DnnContext *dnn_ctx = &ctx->dnnctx; |
|
switch (dnn_ctx->backend_type) { |
|
case DNN_OV: |
|
return dnn_detect_post_proc_ov(frame, output, filter_ctx); |
|
case DNN_TF: |
|
return dnn_detect_post_proc_tf(frame, output, filter_ctx); |
|
default: |
|
avpriv_report_missing_feature(filter_ctx, "Current dnn backend does not support detect filter\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
} |
|
|
|
static void free_detect_labels(DnnDetectContext *ctx) |
|
{ |
|
for (int i = 0; i < ctx->label_count; i++) { |
|
av_freep(&ctx->labels[i]); |
|
} |
|
ctx->label_count = 0; |
|
av_freep(&ctx->labels); |
|
} |
|
|
|
static int read_detect_label_file(AVFilterContext *context) |
|
{ |
|
int line_len; |
|
FILE *file; |
|
DnnDetectContext *ctx = context->priv; |
|
|
|
file = avpriv_fopen_utf8(ctx->labels_filename, "r"); |
|
if (!file){ |
|
av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
while (!feof(file)) { |
|
char *label; |
|
char buf[256]; |
|
if (!fgets(buf, 256, file)) { |
|
break; |
|
} |
|
|
|
line_len = strlen(buf); |
|
while (line_len) { |
|
int i = line_len - 1; |
|
if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') { |
|
buf[i] = '\0'; |
|
line_len--; |
|
} else { |
|
break; |
|
} |
|
} |
|
|
|
if (line_len == 0) |
|
continue; |
|
|
|
if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) { |
|
av_log(context, AV_LOG_ERROR, "label %s too long\n", buf); |
|
fclose(file); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
label = av_strdup(buf); |
|
if (!label) { |
|
av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf); |
|
fclose(file); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) { |
|
av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n"); |
|
fclose(file); |
|
av_freep(&label); |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
fclose(file); |
|
return 0; |
|
} |
|
|
|
static int check_output_nb(DnnDetectContext *ctx, DNNBackendType backend_type, int output_nb) |
|
{ |
|
switch(backend_type) { |
|
case DNN_TF: |
|
if (output_nb != 4) { |
|
av_log(ctx, AV_LOG_ERROR, "Only support tensorflow detect model with 4 outputs, \ |
|
but get %d instead\n", output_nb); |
|
return AVERROR(EINVAL); |
|
} |
|
return 0; |
|
case DNN_OV: |
|
if (output_nb != 1) { |
|
av_log(ctx, AV_LOG_ERROR, "Dnn detect filter with openvino backend needs 1 output only, \ |
|
but get %d instead\n", output_nb); |
|
return AVERROR(EINVAL); |
|
} |
|
return 0; |
|
default: |
|
avpriv_report_missing_feature(ctx, "Dnn detect filter does not support current backend\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
return 0; |
|
} |
|
|
|
static av_cold int dnn_detect_init(AVFilterContext *context) |
|
{ |
|
DnnDetectContext *ctx = context->priv; |
|
DnnContext *dnn_ctx = &ctx->dnnctx; |
|
int ret; |
|
|
|
ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_DETECT, context); |
|
if (ret < 0) |
|
return ret; |
|
ret = check_output_nb(ctx, dnn_ctx->backend_type, dnn_ctx->nb_outputs); |
|
if (ret < 0) |
|
return ret; |
|
ff_dnn_set_detect_post_proc(&ctx->dnnctx, dnn_detect_post_proc); |
|
|
|
if (ctx->labels_filename) { |
|
return read_detect_label_file(context); |
|
} |
|
return 0; |
|
} |
|
|
|
static const enum AVPixelFormat pix_fmts[] = { |
|
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, |
|
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32, |
|
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, |
|
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, |
|
AV_PIX_FMT_NV12, |
|
AV_PIX_FMT_NONE |
|
}; |
|
|
|
static int dnn_detect_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts) |
|
{ |
|
DnnDetectContext *ctx = outlink->src->priv; |
|
int ret; |
|
DNNAsyncStatusType async_state; |
|
|
|
ret = ff_dnn_flush(&ctx->dnnctx); |
|
if (ret != 0) { |
|
return -1; |
|
} |
|
|
|
do { |
|
AVFrame *in_frame = NULL; |
|
AVFrame *out_frame = NULL; |
|
async_state = ff_dnn_get_result(&ctx->dnnctx, &in_frame, &out_frame); |
|
if (async_state == DAST_SUCCESS) { |
|
ret = ff_filter_frame(outlink, in_frame); |
|
if (ret < 0) |
|
return ret; |
|
if (out_pts) |
|
*out_pts = in_frame->pts + pts; |
|
} |
|
av_usleep(5000); |
|
} while (async_state >= DAST_NOT_READY); |
|
|
|
return 0; |
|
} |
|
|
|
static int dnn_detect_activate(AVFilterContext *filter_ctx) |
|
{ |
|
AVFilterLink *inlink = filter_ctx->inputs[0]; |
|
AVFilterLink *outlink = filter_ctx->outputs[0]; |
|
DnnDetectContext *ctx = filter_ctx->priv; |
|
AVFrame *in = NULL; |
|
int64_t pts; |
|
int ret, status; |
|
int got_frame = 0; |
|
int async_state; |
|
|
|
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); |
|
|
|
do { |
|
|
|
ret = ff_inlink_consume_frame(inlink, &in); |
|
if (ret < 0) |
|
return ret; |
|
if (ret > 0) { |
|
if (ff_dnn_execute_model(&ctx->dnnctx, in, NULL) != 0) { |
|
return AVERROR(EIO); |
|
} |
|
} |
|
} while (ret > 0); |
|
|
|
|
|
do { |
|
AVFrame *in_frame = NULL; |
|
AVFrame *out_frame = NULL; |
|
async_state = ff_dnn_get_result(&ctx->dnnctx, &in_frame, &out_frame); |
|
if (async_state == DAST_SUCCESS) { |
|
ret = ff_filter_frame(outlink, in_frame); |
|
if (ret < 0) |
|
return ret; |
|
got_frame = 1; |
|
} |
|
} while (async_state == DAST_SUCCESS); |
|
|
|
|
|
if (got_frame) |
|
return 0; |
|
|
|
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { |
|
if (status == AVERROR_EOF) { |
|
int64_t out_pts = pts; |
|
ret = dnn_detect_flush_frame(outlink, pts, &out_pts); |
|
ff_outlink_set_status(outlink, status, out_pts); |
|
return ret; |
|
} |
|
} |
|
|
|
FF_FILTER_FORWARD_WANTED(outlink, inlink); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold void dnn_detect_uninit(AVFilterContext *context) |
|
{ |
|
DnnDetectContext *ctx = context->priv; |
|
ff_dnn_uninit(&ctx->dnnctx); |
|
free_detect_labels(ctx); |
|
} |
|
|
|
const AVFilter ff_vf_dnn_detect = { |
|
.name = "dnn_detect", |
|
.description = NULL_IF_CONFIG_SMALL("Apply DNN detect filter to the input."), |
|
.priv_size = sizeof(DnnDetectContext), |
|
.init = dnn_detect_init, |
|
.uninit = dnn_detect_uninit, |
|
FILTER_INPUTS(ff_video_default_filterpad), |
|
FILTER_OUTPUTS(ff_video_default_filterpad), |
|
FILTER_PIXFMTS_ARRAY(pix_fmts), |
|
.priv_class = &dnn_detect_class, |
|
.activate = dnn_detect_activate, |
|
}; |
|
|