Camila Arias
commited on
Commit
•
4d14d9c
1
Parent(s):
92d8f05
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,131 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- fr
|
5 |
+
metrics:
|
6 |
+
- seqeval
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: token-classification
|
9 |
+
tags:
|
10 |
+
- medical
|
11 |
+
- biomedical
|
12 |
---
|
13 |
+
|
14 |
+
|
15 |
+
# DrBERT-CASM2
|
16 |
+
|
17 |
+
## Model description
|
18 |
+
|
19 |
+
**DrBERT-CASM2** is a French Named Entity Recognition model that was fine-tuned from
|
20 |
+
[DrBERT](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-PubMedBERT): A PreTrained model in French for biomedical and clinical domains.
|
21 |
+
It has been trained to detect the following type of entities: **problem**, **treatment** and **test** using the medkit Trainer.
|
22 |
+
|
23 |
+
- **Fine-tuned using** medkit [GitHub Repo](https://github.com/TeamHeka/medkit)
|
24 |
+
- **Developed by** @camila-ud, medkit, HeKA Research team
|
25 |
+
- **Dataset from** @aneuraz, CASM2
|
26 |
+
|
27 |
+
# Intended uses & limitations
|
28 |
+
|
29 |
+
## Limitations and bias
|
30 |
+
|
31 |
+
This model was trained for **development and test phases**.
|
32 |
+
This model is limited by its training dataset, and it should be used with caution.
|
33 |
+
The results are not guaranteed, and the model should be used only in data exploration stages.
|
34 |
+
The model may be able to detect entities in the early stages of the analysis of medical documents in French.
|
35 |
+
|
36 |
+
The maximum token size was reduced to **128 tokens** to minimize training time.
|
37 |
+
|
38 |
+
# How to use
|
39 |
+
|
40 |
+
## Install medkit
|
41 |
+
|
42 |
+
First of all, please install medkit with the following command:
|
43 |
+
|
44 |
+
```
|
45 |
+
pip install 'medkit-lib[optional]'
|
46 |
+
```
|
47 |
+
|
48 |
+
Please check the [documentation](https://medkit.readthedocs.io/en/latest/user_guide/install.html) for more info and examples.
|
49 |
+
|
50 |
+
## Using the model
|
51 |
+
|
52 |
+
```python
|
53 |
+
from medkit.core.text import TextDocument
|
54 |
+
from medkit.text.ner.hf_entity_matcher import HFEntityMatcher
|
55 |
+
|
56 |
+
matcher = HFEntityMatcher(model="dcariasvi/DrBERT-CASM2")
|
57 |
+
test_doc = TextDocument("Elle souffre d'asthme mais n'a pas besoin d'Allegra")
|
58 |
+
|
59 |
+
# detect entities in the raw segment
|
60 |
+
detected_entities = matcher.run([test_doc.raw_segment])
|
61 |
+
msg = "|".join(f"'{entity.label}':{entity.text}" for entity in detected_entities)
|
62 |
+
print(f"Text: '{test_doc.text}'\n{msg}")w
|
63 |
+
```
|
64 |
+
```
|
65 |
+
Text: "Elle souffre d'asthme mais n'a pas besoin d'Allegra"
|
66 |
+
'problem':asthme|'treatment':Allegra
|
67 |
+
```
|
68 |
+
|
69 |
+
# Training data
|
70 |
+
|
71 |
+
This model was fine-tuned on **CASM2**, an internal corpus with clinical cases (in french) annotated by master students.
|
72 |
+
The corpus contains more than 5000 medkit documents (~ phrases) with entities to detect.
|
73 |
+
|
74 |
+
**Number of documents (~ phrases) by split**
|
75 |
+
|
76 |
+
| Split | # medkit docs |
|
77 |
+
| ---------- | ------------- |
|
78 |
+
| Train | 5824 |
|
79 |
+
| Validation | 1457 |
|
80 |
+
| Test | 1821 |
|
81 |
+
|
82 |
+
|
83 |
+
**Number of examples per entity type**
|
84 |
+
|
85 |
+
| Split | treatment | test | problem |
|
86 |
+
| ---------- | --------- | ---- | ------- |
|
87 |
+
| Train | 3258 | 3990 | 6808 |
|
88 |
+
| Validation | 842 | 1007 | 1745 |
|
89 |
+
| Test | 994 | 1289 | 2113 |
|
90 |
+
|
91 |
+
## Training procedure
|
92 |
+
|
93 |
+
This model was fine-tuned using the medkit trainer on CPU, it takes about 3h.
|
94 |
+
|
95 |
+
# Model perfomances
|
96 |
+
|
97 |
+
Model performances computes on CASM2 test dataset (using medkit seqeval evaluator)
|
98 |
+
|
99 |
+
Entity|precision|recall|f1
|
100 |
+
-|-|-|-
|
101 |
+
treatment|0.7492|0.7666|0.7578
|
102 |
+
test|0.7449|0.8240|0.7824
|
103 |
+
problem|0.6884|0.7304|0.7088
|
104 |
+
Overall|0.7188|0.7660|0.7416
|
105 |
+
|
106 |
+
## How to evaluate using medkit
|
107 |
+
```python
|
108 |
+
from medkit.text.metrics.ner import SeqEvalEvaluator
|
109 |
+
|
110 |
+
# load the matcher and get predicted entities by document
|
111 |
+
matcher = HFEntityMatcher(model="dcariasvi/DrBERT-CASM2")
|
112 |
+
predicted_entities = [matchers.run([doc.raw_segment]) for doc in test_documents]
|
113 |
+
|
114 |
+
# define seqeval evaluator
|
115 |
+
evaluator = SeqEvalEvaluator(tagging_scheme="iob2")
|
116 |
+
evaluator.compute(test_documents,predicted_entities=predicted_entities)
|
117 |
+
```
|
118 |
+
|
119 |
+
# Citation
|
120 |
+
|
121 |
+
```
|
122 |
+
@online{medkit-lib,
|
123 |
+
author={HeKA Research Team},
|
124 |
+
title={medkit, A Python library for a learning health system},
|
125 |
+
url={https://pypi.org/project/medkit-lib/},
|
126 |
+
urldate = {2023-07-24},
|
127 |
+
}
|
128 |
+
```
|
129 |
+
```
|
130 |
+
HeKA Research Team, “medkit, a Python library for a learning health system.” https://pypi.org/project/medkit-lib/ (accessed Jul. 24, 2023).
|
131 |
+
```
|