--- license: apache-2.0 base_model: microsoft/swinv2-large-patch4-window12-192-22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12-192-22k-huggingface results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9230769230769231 --- # swinv2-large-patch4-window12-192-22k-huggingface This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12-192-22k](https://huggingface.co/microsoft/swinv2-large-patch4-window12-192-22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6329 - Accuracy: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 18 - eval_batch_size: 18 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.781 | 0.97 | 16 | 0.7972 | 0.7385 | | 0.5567 | 2.0 | 33 | 0.4750 | 0.8308 | | 0.3648 | 2.97 | 49 | 0.5832 | 0.8308 | | 0.4016 | 4.0 | 66 | 0.5669 | 0.8 | | 0.2448 | 4.97 | 82 | 0.5883 | 0.8462 | | 0.3382 | 6.0 | 99 | 0.8846 | 0.8 | | 0.3042 | 6.97 | 115 | 0.5364 | 0.8769 | | 0.2744 | 8.0 | 132 | 0.5159 | 0.8769 | | 0.1859 | 8.97 | 148 | 0.5541 | 0.8462 | | 0.1787 | 10.0 | 165 | 0.4850 | 0.8923 | | 0.181 | 10.97 | 181 | 0.4529 | 0.9077 | | 0.113 | 12.0 | 198 | 0.7836 | 0.8154 | | 0.0806 | 12.97 | 214 | 0.7141 | 0.8769 | | 0.0929 | 14.0 | 231 | 0.5765 | 0.9231 | | 0.1208 | 14.97 | 247 | 0.5762 | 0.9231 | | 0.0764 | 16.0 | 264 | 0.6146 | 0.9231 | | 0.099 | 16.97 | 280 | 0.5736 | 0.9231 | | 0.0972 | 18.0 | 297 | 0.6051 | 0.9231 | | 0.0534 | 18.97 | 313 | 0.6302 | 0.9231 | | 0.0754 | 19.39 | 320 | 0.6329 | 0.9231 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1