candyhaws commited on
Commit
ff63b7e
·
1 Parent(s): 9ffbd30

Upload LunarLander-v2 trained agent.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 235.91 +/- 21.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f266402a0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f266402a170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f266402a200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f266402a290>", "_build": "<function ActorCriticPolicy._build at 0x7f266402a320>", "forward": "<function ActorCriticPolicy.forward at 0x7f266402a3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f266402a440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f266402a4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f266402a560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f266402a5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f266402a680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f266402a710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26647e8580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701863176040587580, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMLTLuuIZu6W+R6O/bAdTimC8e6+LCQuQAAgD8AAIA/M6PrOvb0NboGh4A53ESNNAOEXLvuMpi4AACAPwAAgD/N4Jg94dyGusccMDvNinw2rjveOmsBTboAAIA/AACAP41lnb0sFN88v63JPZtDPL6r+VM9nj2zPQAAAAAAAAAATePBPb/tAz/uiKK9cpEzvlgzE71AbIS8AAAAAAAAAAAz94g+paKnP1bc4T4T0sW+nuzCPtrGEr0AAAAAAAAAAOZ0wr2uQYG6PhtEO8SOPTjToVU7Njr0uQAAgD8AAIA/5rlVva7xlLrb7Sw6ZjUXNei9zbpxOUi5AACAPwAAgD/NXOG7HyW0uZX77TtckGM3cZsKvFMkWDYAAIA/AACAP4BKlj0Va5A/qv+HPdUnk747Mvo9Ok+jPAAAAAAAAAAAZtRWvHGddbnjBtw7d6ZLOD/6CrzWvlq4AACAPwAAgD+aoIo8j+pzur5+MbmPpRu0nPwJuyjYTzgAAIA/AACAP6Ynsz0U6KC65PSXuiAQgDevE4M5vs+rOQAAgD8AAIA/AM5iPUhLk7qeP+i48aWxsz6UJjkILgY4AACAPwAAgD8aq5G9XJ88uqjcwjoR1Dg0wNpqu47J47kAAIA/AACAP5pvkL3XozK5Esrtuomb5rVnXPC6xi4NOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGCT0PQOWjaMAWyUTegDjAF0lEdAk8Ji4z7/GXV9lChoBkdAYCCnzg/C7GgHTegDaAhHQJPCmcjJMg51fZQoaAZHQGZu4bsF+uxoB03oA2gIR0CTyDjoIOYqdX2UKGgGR0BjV2PeYUnHaAdN6ANoCEdAk8jo1tO2zHV9lChoBkdAZTIzZYgaFWgHTegDaAhHQJPMmi9Iwud1fZQoaAZHQGUY3QD3dsVoB03oA2gIR0CT0iuMdcSodX2UKGgGR0BRkqV+qioLaAdL7GgIR0CT260VrRBvdX2UKGgGR0Bd1l36hxo7aAdN6ANoCEdAk9221IAfdXV9lChoBkdAY+YmKIi1RmgHTegDaAhHQJPkT9ehPCV1fZQoaAZHQGH8pON5t3xoB03oA2gIR0CT57BeokzHdX2UKGgGR0BiJ/xMFlkIaAdN6ANoCEdAk/VhNM495nV9lChoBkdAYtLHsC1Z1WgHTegDaAhHQJP3zjjrAxl1fZQoaAZHQGPpIXbdrO9oB03oA2gIR0CUDoL74zrNdX2UKGgGR0BnQ3L1VYITaAdN6ANoCEdAlA/hA8jiXXV9lChoBkdAXzxQXQ+lj2gHTegDaAhHQJQTsTdtVJd1fZQoaAZHQGb0uW0JF9doB03oA2gIR0CUFyGN70FsdX2UKGgGR0BmXWVX3g1naAdN6ANoCEdAlBdo5DJEIHV9lChoBkdAYW9IvrWy1WgHTegDaAhHQJQX1+uvECN1fZQoaAZHQGZqz6i0v5BoB03oA2gIR0CUGD0iyIHkdX2UKGgGR0BNst2LYPGyaAdL6WgIR0CUGKF0gbIcdX2UKGgGR0BbCm38XN1RaAdN6ANoCEdAlCE5YYBNmHV9lChoBkdAY5grvsqrimgHTegDaAhHQJQiDazu4PR1fZQoaAZHQGSZcHObAk9oB03oA2gIR0CULX1jy4FzdX2UKGgGR0BmEh0jkdWAaAdN6ANoCEdAlDe1G5MDfXV9lChoBkdAXTJipeeFtmgHTegDaAhHQJQ5X9YOlO51fZQoaAZHQGLAgPVd5Y5oB03oA2gIR0CUPrejEehgdX2UKGgGR0BhxWPaL4vfaAdN6ANoCEdAlEFmJaaCtnV9lChoBkdAZFvMoMKCx2gHTegDaAhHQJRUQQumJnB1fZQoaAZHQGD6HG0eEIxoB03oA2gIR0CUa+b+cYqHdX2UKGgGR0BkiXIQvpQlaAdN6ANoCEdAlG09u1ndwnV9lChoBkdAYPe90zTF2mgHTegDaAhHQJRwKW2PT5R1fZQoaAZHQGR9dt2s7uFoB03oA2gIR0CUcmT7EYO2dX2UKGgGR0BnHpHmRvFWaAdN6ANoCEdAlHKSiRGMGXV9lChoBkdAYokXZXdTHmgHTegDaAhHQJRy37aZhKF1fZQoaAZHQFvhQRwqAjJoB03oA2gIR0CUcx5iExqPdX2UKGgGR0BlHWJzkp7UaAdN6ANoCEdAlHNcfigkC3V9lChoBkdAZ6vjEvTPSmgHTegDaAhHQJR4l7BwdbR1fZQoaAZHQFxUJAdGRV9oB03oA2gIR0CUeUHnEETydX2UKGgGR0BjL4co6S1WaAdN6ANoCEdAlIQkhvBJqnV9lChoBkdAZRAPCEYfn2gHTegDaAhHQJSQKWY4Qz11fZQoaAZHQGVKFUIcBENoB03oA2gIR0CUkYeSjgyedX2UKGgGR0BjDSDsdDIBaAdN6ANoCEdAlJYTMaCL/HV9lChoBkdAYzMfg75mAmgHTegDaAhHQJSYQrUb1h91fZQoaAZHQGyXbH6uW8hoB01HAmgIR0CUmF/c32mIdX2UKGgGR0Bgza7PIGQkaAdN6ANoCEdAlKTwuZkTYnV9lChoBkdAZv2OuJUHZGgHTegDaAhHQJS7lWxQizN1fZQoaAZHQGWRyvcJtzloB03oA2gIR0CUvTjFQ2uQdX2UKGgGR0BhEFS619fDaAdN6ANoCEdAlMDA9vCMxXV9lChoBkdAZxF0I1LrX2gHTegDaAhHQJTDobFS88N1fZQoaAZHQGVkQswtapxoB03oA2gIR0CUw9nxaxHHdX2UKGgGR0Bh8CO1fE4vaAdN6ANoCEdAlMSb9hqj8HV9lChoBkdAYd8b3Gn4wmgHTegDaAhHQJTFAeDFqBV1fZQoaAZHQGVzJrtVrARoB03oA2gIR0CUy7Ei+tbLdX2UKGgGR0Blf3yZrpJPaAdN6ANoCEdAlMxvO6d1+3V9lChoBkdAZtFfgrH2iGgHTegDaAhHQJTXaLm6oVF1fZQoaAZHQC2/w1BMSK5oB00DAWgIR0CU3RzvZyuIdX2UKGgGR0BiTNcry1/laAdN6ANoCEdAlODTj3mFJ3V9lChoBkdAYLaYb83uNWgHTegDaAhHQJTiiz1K5Cp1fZQoaAZHQF0HwPRRdhRoB03oA2gIR0CU53kZ75VPdX2UKGgGR0BjP7drO7g9aAdN6ANoCEdAlOnx4QjD9HV9lChoBkdAZ5vCpFTef2gHTegDaAhHQJTqD4UN8Vp1fZQoaAZHQGL7AieNDMNoB03oA2gIR0CU/FAQg9vCdX2UKGgGR0BjSLTYukDZaAdN6ANoCEdAlQM7kbPyCnV9lChoBkdAYsdAzHjp92gHTegDaAhHQJUVAnUlRgt1fZQoaAZHQGa6qxs2vStoB03oA2gIR0CVF8tjkMkQdX2UKGgGR0Bv38iliz9kaAdNUwNoCEdAlRjyX+l0o3V9lChoBkdAZVtXDFZPmGgHTegDaAhHQJUZ6Kk2xY91fZQoaAZHQGC6dRBNVR1oB03oA2gIR0CVGhK508vFdX2UKGgGR0BgqEeEIw/QaAdN6ANoCEdAlRqiOJcgQ3V9lChoBkdAYewRkmQbM2gHTegDaAhHQJUa5zMibDx1fZQoaAZHQE0F5RCQcPxoB0v8aAhHQJUli68QI2R1fZQoaAZHQGSiarWAf+1oB03oA2gIR0CVLt54nndPdX2UKGgGR0BgU+vECNjtaAdN6ANoCEdAlTZPub7TD3V9lChoBkdAZh6oMrmQsGgHTegDaAhHQJU6Mo0ALiN1fZQoaAZHQFubH1e0G/xoB03oA2gIR0CVO6W5H3DfdX2UKGgGR0BcwNQbdadMaAdN6ANoCEdAlUBosd1dPnV9lChoBkdAZYXVx0dRzmgHTegDaAhHQJVC1hTfixV1fZQoaAZHQGP7GOdXko5oB03oA2gIR0CVQvjTa0x/dX2UKGgGR0BmRk6NlyzYaAdN6ANoCEdAlVFSWNWEK3V9lChoBkdAYNmRcu8K5WgHTegDaAhHQJVXTQzDXOJ1fZQoaAZHQGTKEehf0EpoB03oA2gIR0CVWH2vB7/odX2UKGgGR0BxSX3fyf+TaAdNzgNoCEdAlW/eWOZLI3V9lChoBkdAZEAuscQyymgHTegDaAhHQJVwUG5c1O11fZQoaAZHQGC9IhhYvFpoB03oA2gIR0CVcUvSc9W7dX2UKGgGR0BkAPK+zt1IaAdN6ANoCEdAlXIB6Ww/xHV9lChoBkdAZzPAeJYT02gHTegDaAhHQJVyQYoAn2J1fZQoaAZHQHAK71M/QjVoB02EAmgIR0CVdk1iONo8dX2UKGgGR0BiL0WhysCDaAdN6ANoCEdAlXwHmvGIbnV9lChoBkdAURExFiKBNGgHS91oCEdAlXxAxzq8lHV9lChoBkdAXckehf0Eo2gHTegDaAhHQJWCH8dgfEJ1fZQoaAZHQHA147ihnJ1oB03rAWgIR0CVhnSQo1DTdX2UKGgGR0BlZrEHdGiIaAdN6ANoCEdAlYcuIInjQ3V9lChoBkdAb9q9B8hLXmgHTWcDaAhHQJWIFDRc/t91fZQoaAZHQGO2E74i5d5oB03oA2gIR0CVi459Vmz0dX2UKGgGR0BjDxQaaTfSaAdN6ANoCEdAlZInHaN+9nV9lChoBkdAZIVf3vhIfGgHTegDaAhHQJWSSk9ECvJ1fZQoaAZHQHIIGepXIU9oB03IAmgIR0CVmb0a6z3RdX2UKGgGR0Bk3lelbeMyaAdN6ANoCEdAlaQD37DVIHV9lChoBkdAcGjW/rSmZWgHTaoDaAhHQJWpzH6uW8h1fZQoaAZHQGa+UFB6a9doB03oA2gIR0CVqjDCP6sRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c31cf90306794646a0677884168344aac9292cbfbe8b9cd226c271c17b9a35
3
+ size 148050
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f266402a0e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f266402a170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f266402a200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f266402a290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f266402a320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f266402a3b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f266402a440>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f266402a4d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f266402a560>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f266402a5f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f266402a680>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f266402a710>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f26647e8580>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701863176040587580,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMLTLuuIZu6W+R6O/bAdTimC8e6+LCQuQAAgD8AAIA/M6PrOvb0NboGh4A53ESNNAOEXLvuMpi4AACAPwAAgD/N4Jg94dyGusccMDvNinw2rjveOmsBTboAAIA/AACAP41lnb0sFN88v63JPZtDPL6r+VM9nj2zPQAAAAAAAAAATePBPb/tAz/uiKK9cpEzvlgzE71AbIS8AAAAAAAAAAAz94g+paKnP1bc4T4T0sW+nuzCPtrGEr0AAAAAAAAAAOZ0wr2uQYG6PhtEO8SOPTjToVU7Njr0uQAAgD8AAIA/5rlVva7xlLrb7Sw6ZjUXNei9zbpxOUi5AACAPwAAgD/NXOG7HyW0uZX77TtckGM3cZsKvFMkWDYAAIA/AACAP4BKlj0Va5A/qv+HPdUnk747Mvo9Ok+jPAAAAAAAAAAAZtRWvHGddbnjBtw7d6ZLOD/6CrzWvlq4AACAPwAAgD+aoIo8j+pzur5+MbmPpRu0nPwJuyjYTzgAAIA/AACAP6Ynsz0U6KC65PSXuiAQgDevE4M5vs+rOQAAgD8AAIA/AM5iPUhLk7qeP+i48aWxsz6UJjkILgY4AACAPwAAgD8aq5G9XJ88uqjcwjoR1Dg0wNpqu47J47kAAIA/AACAP5pvkL3XozK5Esrtuomb5rVnXPC6xi4NOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGCT0PQOWjaMAWyUTegDjAF0lEdAk8Ji4z7/GXV9lChoBkdAYCCnzg/C7GgHTegDaAhHQJPCmcjJMg51fZQoaAZHQGZu4bsF+uxoB03oA2gIR0CTyDjoIOYqdX2UKGgGR0BjV2PeYUnHaAdN6ANoCEdAk8jo1tO2zHV9lChoBkdAZTIzZYgaFWgHTegDaAhHQJPMmi9Iwud1fZQoaAZHQGUY3QD3dsVoB03oA2gIR0CT0iuMdcSodX2UKGgGR0BRkqV+qioLaAdL7GgIR0CT260VrRBvdX2UKGgGR0Bd1l36hxo7aAdN6ANoCEdAk9221IAfdXV9lChoBkdAY+YmKIi1RmgHTegDaAhHQJPkT9ehPCV1fZQoaAZHQGH8pON5t3xoB03oA2gIR0CT57BeokzHdX2UKGgGR0BiJ/xMFlkIaAdN6ANoCEdAk/VhNM495nV9lChoBkdAYtLHsC1Z1WgHTegDaAhHQJP3zjjrAxl1fZQoaAZHQGPpIXbdrO9oB03oA2gIR0CUDoL74zrNdX2UKGgGR0BnQ3L1VYITaAdN6ANoCEdAlA/hA8jiXXV9lChoBkdAXzxQXQ+lj2gHTegDaAhHQJQTsTdtVJd1fZQoaAZHQGb0uW0JF9doB03oA2gIR0CUFyGN70FsdX2UKGgGR0BmXWVX3g1naAdN6ANoCEdAlBdo5DJEIHV9lChoBkdAYW9IvrWy1WgHTegDaAhHQJQX1+uvECN1fZQoaAZHQGZqz6i0v5BoB03oA2gIR0CUGD0iyIHkdX2UKGgGR0BNst2LYPGyaAdL6WgIR0CUGKF0gbIcdX2UKGgGR0BbCm38XN1RaAdN6ANoCEdAlCE5YYBNmHV9lChoBkdAY5grvsqrimgHTegDaAhHQJQiDazu4PR1fZQoaAZHQGSZcHObAk9oB03oA2gIR0CULX1jy4FzdX2UKGgGR0BmEh0jkdWAaAdN6ANoCEdAlDe1G5MDfXV9lChoBkdAXTJipeeFtmgHTegDaAhHQJQ5X9YOlO51fZQoaAZHQGLAgPVd5Y5oB03oA2gIR0CUPrejEehgdX2UKGgGR0BhxWPaL4vfaAdN6ANoCEdAlEFmJaaCtnV9lChoBkdAZFvMoMKCx2gHTegDaAhHQJRUQQumJnB1fZQoaAZHQGD6HG0eEIxoB03oA2gIR0CUa+b+cYqHdX2UKGgGR0BkiXIQvpQlaAdN6ANoCEdAlG09u1ndwnV9lChoBkdAYPe90zTF2mgHTegDaAhHQJRwKW2PT5R1fZQoaAZHQGR9dt2s7uFoB03oA2gIR0CUcmT7EYO2dX2UKGgGR0BnHpHmRvFWaAdN6ANoCEdAlHKSiRGMGXV9lChoBkdAYokXZXdTHmgHTegDaAhHQJRy37aZhKF1fZQoaAZHQFvhQRwqAjJoB03oA2gIR0CUcx5iExqPdX2UKGgGR0BlHWJzkp7UaAdN6ANoCEdAlHNcfigkC3V9lChoBkdAZ6vjEvTPSmgHTegDaAhHQJR4l7BwdbR1fZQoaAZHQFxUJAdGRV9oB03oA2gIR0CUeUHnEETydX2UKGgGR0BjL4co6S1WaAdN6ANoCEdAlIQkhvBJqnV9lChoBkdAZRAPCEYfn2gHTegDaAhHQJSQKWY4Qz11fZQoaAZHQGVKFUIcBENoB03oA2gIR0CUkYeSjgyedX2UKGgGR0BjDSDsdDIBaAdN6ANoCEdAlJYTMaCL/HV9lChoBkdAYzMfg75mAmgHTegDaAhHQJSYQrUb1h91fZQoaAZHQGyXbH6uW8hoB01HAmgIR0CUmF/c32mIdX2UKGgGR0Bgza7PIGQkaAdN6ANoCEdAlKTwuZkTYnV9lChoBkdAZv2OuJUHZGgHTegDaAhHQJS7lWxQizN1fZQoaAZHQGWRyvcJtzloB03oA2gIR0CUvTjFQ2uQdX2UKGgGR0BhEFS619fDaAdN6ANoCEdAlMDA9vCMxXV9lChoBkdAZxF0I1LrX2gHTegDaAhHQJTDobFS88N1fZQoaAZHQGVkQswtapxoB03oA2gIR0CUw9nxaxHHdX2UKGgGR0Bh8CO1fE4vaAdN6ANoCEdAlMSb9hqj8HV9lChoBkdAYd8b3Gn4wmgHTegDaAhHQJTFAeDFqBV1fZQoaAZHQGVzJrtVrARoB03oA2gIR0CUy7Ei+tbLdX2UKGgGR0Blf3yZrpJPaAdN6ANoCEdAlMxvO6d1+3V9lChoBkdAZtFfgrH2iGgHTegDaAhHQJTXaLm6oVF1fZQoaAZHQC2/w1BMSK5oB00DAWgIR0CU3RzvZyuIdX2UKGgGR0BiTNcry1/laAdN6ANoCEdAlODTj3mFJ3V9lChoBkdAYLaYb83uNWgHTegDaAhHQJTiiz1K5Cp1fZQoaAZHQF0HwPRRdhRoB03oA2gIR0CU53kZ75VPdX2UKGgGR0BjP7drO7g9aAdN6ANoCEdAlOnx4QjD9HV9lChoBkdAZ5vCpFTef2gHTegDaAhHQJTqD4UN8Vp1fZQoaAZHQGL7AieNDMNoB03oA2gIR0CU/FAQg9vCdX2UKGgGR0BjSLTYukDZaAdN6ANoCEdAlQM7kbPyCnV9lChoBkdAYsdAzHjp92gHTegDaAhHQJUVAnUlRgt1fZQoaAZHQGa6qxs2vStoB03oA2gIR0CVF8tjkMkQdX2UKGgGR0Bv38iliz9kaAdNUwNoCEdAlRjyX+l0o3V9lChoBkdAZVtXDFZPmGgHTegDaAhHQJUZ6Kk2xY91fZQoaAZHQGC6dRBNVR1oB03oA2gIR0CVGhK508vFdX2UKGgGR0BgqEeEIw/QaAdN6ANoCEdAlRqiOJcgQ3V9lChoBkdAYewRkmQbM2gHTegDaAhHQJUa5zMibDx1fZQoaAZHQE0F5RCQcPxoB0v8aAhHQJUli68QI2R1fZQoaAZHQGSiarWAf+1oB03oA2gIR0CVLt54nndPdX2UKGgGR0BgU+vECNjtaAdN6ANoCEdAlTZPub7TD3V9lChoBkdAZh6oMrmQsGgHTegDaAhHQJU6Mo0ALiN1fZQoaAZHQFubH1e0G/xoB03oA2gIR0CVO6W5H3DfdX2UKGgGR0BcwNQbdadMaAdN6ANoCEdAlUBosd1dPnV9lChoBkdAZYXVx0dRzmgHTegDaAhHQJVC1hTfixV1fZQoaAZHQGP7GOdXko5oB03oA2gIR0CVQvjTa0x/dX2UKGgGR0BmRk6NlyzYaAdN6ANoCEdAlVFSWNWEK3V9lChoBkdAYNmRcu8K5WgHTegDaAhHQJVXTQzDXOJ1fZQoaAZHQGTKEehf0EpoB03oA2gIR0CVWH2vB7/odX2UKGgGR0BxSX3fyf+TaAdNzgNoCEdAlW/eWOZLI3V9lChoBkdAZEAuscQyymgHTegDaAhHQJVwUG5c1O11fZQoaAZHQGC9IhhYvFpoB03oA2gIR0CVcUvSc9W7dX2UKGgGR0BkAPK+zt1IaAdN6ANoCEdAlXIB6Ww/xHV9lChoBkdAZzPAeJYT02gHTegDaAhHQJVyQYoAn2J1fZQoaAZHQHAK71M/QjVoB02EAmgIR0CVdk1iONo8dX2UKGgGR0BiL0WhysCDaAdN6ANoCEdAlXwHmvGIbnV9lChoBkdAURExFiKBNGgHS91oCEdAlXxAxzq8lHV9lChoBkdAXckehf0Eo2gHTegDaAhHQJWCH8dgfEJ1fZQoaAZHQHA147ihnJ1oB03rAWgIR0CVhnSQo1DTdX2UKGgGR0BlZrEHdGiIaAdN6ANoCEdAlYcuIInjQ3V9lChoBkdAb9q9B8hLXmgHTWcDaAhHQJWIFDRc/t91fZQoaAZHQGO2E74i5d5oB03oA2gIR0CVi459Vmz0dX2UKGgGR0BjDxQaaTfSaAdN6ANoCEdAlZInHaN+9nV9lChoBkdAZIVf3vhIfGgHTegDaAhHQJWSSk9ECvJ1fZQoaAZHQHIIGepXIU9oB03IAmgIR0CVmb0a6z3RdX2UKGgGR0Bk3lelbeMyaAdN6ANoCEdAlaQD37DVIHV9lChoBkdAcGjW/rSmZWgHTaoDaAhHQJWpzH6uW8h1fZQoaAZHQGa+UFB6a9doB03oA2gIR0CVqjDCP6sRdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:092499e06d5e349083207fc68766a86d227b785160c020ca712575ba55c00d0e
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74da07192bf5a80d101231330e45602e900ed83cb1e795680ec6e54a66f1331f
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 235.91316650000005, "std_reward": 21.407677753447356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-06T12:13:36.871474"}