File size: 24,975 Bytes
afe3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
"""
Reported Effects and Aromas Prediction Model
Copyright (c) 2022 Cannlytics
Authors: Keegan Skeate <https://github.com/keeganskeate>
Created: 5/13/2022
Updated: 6/1/2022
License: MIT License <https://opensource.org/licenses/MIT>
Description:
This methodology estimates the probability of a review containing
a specific aroma or effect. The methodology is then saved in
a re-usable model that can predict potential aromas and effects
given lab results for strains, flower products, etc.
Data Sources:
- Data from: Over eight hundred cannabis strains characterized
by the relationship between their subjective effects, perceptual
profiles, and chemical compositions
URL: <https://data.mendeley.com/datasets/6zwcgrttkp/1>
License: CC BY 4.0. <https://creativecommons.org/licenses/by/4.0/>
Resources:
- Over eight hundred cannabis strains characterized by the
relationship between their psychoactive effects, perceptual
profiles, and chemical compositions
URL: <https://www.biorxiv.org/content/10.1101/759696v1.abstract>
- Effects of cannabidiol in cannabis flower:
Implications for harm reduction
URL: <https://pubmed.ncbi.nlm.nih.gov/34467598/>
"""
# Standard imports.
from datetime import datetime
import os
from typing import Any, Optional
# External imports.
from dotenv import dotenv_values
import pandas as pd
# Internal imports.
from cannlytics.firebase import (
initialize_firebase,
update_documents,
)
from cannlytics.stats import (
calculate_model_statistics,
estimate_discrete_model,
get_stats_model,
predict_stats_model,
upload_stats_model,
)
from cannlytics.utils import (
snake_case,
combine_columns,
nonzero_columns,
nonzero_rows,
sum_columns,
download_file_from_url,
unzip_files,
)
# Ignore convergence errors.
import warnings
from statsmodels.tools.sm_exceptions import ConvergenceWarning
warnings.simplefilter('ignore', ConvergenceWarning)
warnings.simplefilter('ignore', RuntimeWarning)
# Decarboxylation rate. Source: <https://www.conflabs.com/why-0-877/>
DECARB = 0.877
# TODO: It would be worthwhile to parse effects and aromas
# ourselves with NLP. Sometimes effects may be mentioned
# but not a negative. For example,"helped with my anxiety."
def download_strain_review_data(
data_dir: str,
url: Optional[str] = 'https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/6zwcgrttkp-1.zip',
):
"""Download historic strain review data.
First, creates the data directory if it doesn't already exist.
Second, downloads the data to the given directory.
Third, unzips the data and returns the directories.
Source: "Data from: Over eight hundred cannabis strains characterized
by the relationship between their subjective effects, perceptual
profiles, and chemical compositions".
URL: <https://data.mendeley.com/datasets/6zwcgrttkp/1>
License: CC BY 4.0. <https://creativecommons.org/licenses/by/4.0/>
"""
if not os.path.exists(data_dir):
os.makedirs(data_dir)
download_file_from_url(url, destination=data_dir)
unzip_files(data_dir)
# Optional: Get the directories programmatically.
strain_folder = 'Strain data/strains'
compound_folder = 'Terpene and Cannabinoid data'
return {'strains': strain_folder, 'compounds': compound_folder}
def curate_lab_results(
data_dir: str,
compound_folder: Optional[str] = 'Terpene and Cannabinoid data',
cannabinoid_file: Optional[str] = 'rawDATACana',
terpene_file: Optional[str] = 'rawDATATerp',
max_cannabinoids: Optional[int] = 35,
max_terpenes: Optional[int] = 8,
):
"""Curate lab results for effects prediction model.
Args:
data_dir (str): The data where the raw lab results live.
compound_folder (str): The folder where the cannabinoid and terpene data live.
cannabinoid_file (str): The name of the raw cannabinoid text file.
terpene_file (str): The name of the raw terpene text file.
max_cannabinoids (int): The maximum value for permissible cannabinoid tests.
max_terpenes (int): The maximum value for permissible terpene tests.
Returns:
(DataFrame): Returns the lab results.
"""
# Rename any oddly named columns.
rename = {
'cb_da': 'cbda',
'cb_ga': 'cbda',
'delta_9_th_ca': 'delta_9_thca',
'th_ca': 'thca',
'caryophylleneoxide': 'caryophyllene_oxide',
'3_carene': 'carene',
}
# Read terpenes.
terpenes = None
if terpene_file:
file_path = os.path.join(data_dir, compound_folder, terpene_file)
terpenes = pd.read_csv(file_path, index_col=0)
terpenes.columns = [snake_case(x).strip('x_') for x in terpenes.columns]
terpenes.rename(columns=rename, inplace=True)
terpene_names = list(terpenes.columns[3:])
compounds = terpenes
# Read cannabinoids.
cannabinoids = None
if cannabinoid_file:
file_path = os.path.join(data_dir, compound_folder, cannabinoid_file)
cannabinoids = pd.read_csv(file_path, index_col=0)
cannabinoids.columns = [snake_case(x).strip('x_') for x in cannabinoids.columns]
cannabinoids.rename(columns=rename, inplace=True)
cannabinoid_names = list(cannabinoids.columns[3:])
compounds = cannabinoids
# Merge terpenes and cannabinoids.
if terpene_file and cannabinoid_file:
compounds = pd.merge(
left=cannabinoids,
right=terpenes,
left_on='file',
right_on='file',
how='left',
suffixes=['', '_terpene']
)
# Combine identical cannabinoids.
compounds = combine_columns(compounds, 'thca', 'delta_9_thca')
cannabinoid_names.remove('delta_9_thca')
# Combine identical terpenes.
compounds = combine_columns(compounds, 'p_cymene', 'pcymene')
compounds = combine_columns(compounds, 'beta_caryophyllene', 'caryophyllene')
compounds = combine_columns(compounds, 'humulene', 'alpha_humulene')
terpene_names.remove('pcymene')
terpene_names.remove('caryophyllene')
terpene_names.remove('alpha_humulene')
# Sum ocimene.
analytes = ['ocimene', 'beta_ocimene', 'trans_ocimene']
compounds = sum_columns(compounds, 'ocimene', analytes, drop=False)
compounds.drop(columns=['beta_ocimene', 'trans_ocimene'], inplace=True)
terpene_names.remove('beta_ocimene')
terpene_names.remove('trans_ocimene')
# Sum nerolidol.
analytes = ['trans_nerolidol', 'cis_nerolidol', 'transnerolidol_1',
'transnerolidol_2']
compounds = sum_columns(compounds, 'nerolidol', analytes)
terpene_names.remove('trans_nerolidol')
terpene_names.remove('cis_nerolidol')
terpene_names.remove('transnerolidol_1')
terpene_names.remove('transnerolidol_2')
terpene_names.append('nerolidol')
# Code missing values as 0.
compounds = compounds.fillna(0)
# Calculate totals.
compounds['total_terpenes'] = compounds[terpene_names].sum(axis=1).round(2)
compounds['total_cannabinoids'] = compounds[cannabinoid_names].sum(axis=1).round(2)
# Calculate total THC, CBD, and CBG.
# TODO: Optimize?
compounds.loc[compounds['thca'] == 0, 'total_thc'] = compounds['delta_9_thc'].round(2)
compounds.loc[compounds['thca'] != 0, 'total_thc'] = (compounds['delta_9_thc'] + compounds['thca'].mul(DECARB)).round(2)
compounds.loc[compounds['cbda'] == 0, 'total_cbd'] = compounds['cbd'].round(2)
compounds.loc[compounds['cbda'] != 0, 'total_cbd'] = (compounds['cbd'] + compounds['cbda'].mul(DECARB)).round(2)
compounds.loc[compounds['cbga'] == 0, 'total_cbg'] = compounds['cbg'].round(2)
compounds.loc[compounds['cbga'] != 0, 'total_cbg'] = (compounds['cbg'] + compounds['cbga'].mul(DECARB)).round(2)
# Calculate terpinenes total.
analytes = ['alpha_terpinene', 'gamma_terpinene', 'terpinolene', 'terpinene']
compounds = sum_columns(compounds, 'terpinenes', analytes, drop=False)
# Exclude outliers.
compounds = compounds.loc[
(compounds['total_cannabinoids'] < max_cannabinoids) &
(compounds['total_terpenes'] < max_terpenes)
]
# Clean and return the data.
extraneous = ['type', 'file', 'tag_terpene', 'type_terpene']
compounds.drop(columns=extraneous, inplace=True)
compounds.rename(columns={'tag': 'strain_name'}, inplace=True)
compounds['strain_name'] = compounds['strain_name'].str.replace('-', ' ').str.title()
return compounds
def curate_strain_reviews(
data_dir: str,
results: Any,
strain_folder: Optional[str] = 'Strain data/strains',
):
"""Curate cannabis strain reviews.
Args:
data_dir (str): The directory where the data lives.
results (DataFrame): The curated lab result data.
strain_folder (str): The folder where the review data lives.
Returns:
(DataFrame): Returns the strain reviews.
"""
# Create a panel of reviews of strain lab results.
panel = pd.DataFrame()
for _, row in results.iterrows():
# Read the strain's effects and aromas data.
review_file = row.name.lower().replace(' ', '-') + '.p'
file_path = os.path.join(data_dir, strain_folder, review_file)
try:
strain = pd.read_pickle(file_path)
except FileNotFoundError:
print("Couldn't find:", file_path)
continue
# Assign dummy variables for effects and aromas.
reviews = strain['data_strain']
name = strain['strain']
category = list(strain['categorias'])[0]
for n, review in enumerate(reviews):
# Create panel observation, combining prior compound data.
obs = row.copy()
for aroma in review['sabores']:
key = 'aroma_' + snake_case(aroma)
obs[key] = 1
for effect in review['efectos']:
key = 'effect_' + snake_case(effect)
obs[key] = 1
# Assign category determined from original authors NLP.
obs['category'] = category
obs['strain_name'] = row.name
obs['review'] = review['reporte']
obs['user'] = review['usuario']
# Record the observation.
obs.name = name + '-' + str(n)
obs = obs.to_frame().transpose()
panel = pd.concat([panel, obs])
# Return the panel with null effects and aromas coded as 0.
return panel.fillna(0)
def download_dataset(name, destination):
"""Download a Cannlytics dataset by its name and given a destination.
Args:
name (str): A dataset short name.
destination (str): The path to download the data for it to live.
"""
short_url = f'https://cannlytics.page.link/{name}'
download_file_from_url(short_url, destination=destination)
#-----------------------------------------------------------------------
# Tests
#-----------------------------------------------------------------------
if __name__ == '__main__':
#-------------------------------------------------------------------
# Curate the strain lab result data.
#-------------------------------------------------------------------
print('Testing...')
DATA_DIR = '../../../.datasets/subjective-effects'
# Optional: Download the original data.
# download_strain_review_data(DATA_DIR)
# Curate the lab results.
print('Curating strain lab results...')
results = curate_lab_results(DATA_DIR)
# Average results by strain, counting the number of tests per strain.
strain_data = results.groupby('strain_name').mean()
strain_data['tests'] = results.groupby('strain_name')['cbd'].count()
strain_data['strain_name'] = strain_data.index
# Save the lab results and strain data.
# today = datetime.now().isoformat()[:10]
# results.to_excel(DATA_DIR + f'/psi-labs-results-{today}.xlsx')
# strain_data.to_excel(DATA_DIR + f'/strain-avg-results-{today}.xlsx')
#-------------------------------------------------------------------
# # Initialize Firebase.
# env_file = '../../../.env'
# config = dotenv_values(env_file)
# bucket_name = config['FIREBASE_STORAGE_BUCKET']
# db = initialize_firebase(
# env_file=env_file,
# bucket_name=bucket_name,
# )
# Upload the strain data to Firestore.
# docs = strain_data.to_dict(orient='records')
# refs = [f'public/data/strains/{x}' for x in strain_data.index]
# update_documents(refs, docs, database=db)
# print('Updated %i strains.' % len(docs))
# Upload individual lab results for each strain.
# Future work: Format the lab results as metrics with CAS, etc.
# results['id'] = results.index
# results['lab_id'] = 'SC-000005'
# results['lab_name'] = 'PSI Labs'
# docs = results.to_dict(orient='records')
# refs = [f'public/data/strains/{x[0]}/strain_lab_results/lab_result_{x[1]}' for x in results[['strain_name', 'id']].values]
# update_documents(refs, docs, database=db)
# print('Updated %i strain lab results.' % len(docs))
#-------------------------------------------------------------------
# Curate the strain review data.
#-------------------------------------------------------------------
# # Curate the reviews.
print('Curating reviews...')
reviews = curate_strain_reviews(DATA_DIR, strain_data)
# Combine `effect_anxiety` and `effect_anxious`.
reviews = combine_columns(reviews, 'effect_anxious', 'effect_anxiety')
# # Optional: Save and read back in the reviews.
today = datetime.now().isoformat()[:10]
datafile = DATA_DIR + f'/strain-reviews-{today}.xlsx'
reviews.to_excel(datafile)
# datafile = DATA_DIR + '/strain-reviews-2022-06-01.xlsx'
# reviews = pd.read_excel(datafile, index_col=0)
# # Optional: Upload strain review data to Firestore.
# reviews['id'] = reviews.index
# docs = reviews.to_dict(orient='records')
# refs = [f'public/data/strains/{x[0]}/strain_reviews/strain_review_{x[1]}' for x in reviews[['strain_name', 'id']].values]
# # update_documents(refs, docs, database=db)
#-------------------------------------------------------------------
# Future work: Programmatically upload the datasets to Storage.
# Optional: Download the pre-compiled data from Cannlytics.
# strain_data = download_dataset('strains', DATA_DIR)
# reviews = download_dataset('strain-reviews', DATA_DIR)
#-------------------------------------------------------------------
# Fit the model with the training data.
#-------------------------------------------------------------------
# Specify different prediction models.
# Future work: Logit, cannabinoid / terpene ratios, and bayesian models.
# Handle `minor` cannabinoids in `totals` and perhaps `simple` models
# (i.e. `total_cannabinoids` - `total_thc` - `total_cbd`).
variates = {
'full': [
'delta_9_thc',
'cbd',
'cbn',
'cbg',
'cbc',
'thcv',
'cbda',
'delta_8_thc',
'cbga',
'thca',
'd_limonene',
'beta_myrcene',
'beta_pinene',
'linalool',
'alpha_pinene',
'camphene',
'carene',
'alpha_terpinene',
'ocimene',
'eucalyptol',
'gamma_terpinene',
'terpinolene',
'isopulegol',
'geraniol',
'humulene',
'guaiol',
'caryophyllene_oxide',
'alpha_bisabolol',
'beta_caryophyllene',
'p_cymene',
'terpinene',
'nerolidol',
],
'terpene_only': [
'd_limonene',
'beta_myrcene',
'beta_pinene',
'linalool',
'alpha_pinene',
'camphene',
'carene',
'alpha_terpinene',
'ocimene',
'eucalyptol',
'gamma_terpinene',
'terpinolene',
'isopulegol',
'geraniol',
'humulene',
'guaiol',
'caryophyllene_oxide',
'alpha_bisabolol',
'beta_caryophyllene',
'p_cymene',
'terpinene',
'nerolidol',
],
'cannabinoid_only': [
'delta_9_thc',
'cbd',
'cbn',
'cbg',
'cbc',
'thcv',
'cbda',
'delta_8_thc',
'cbga',
'thca',
],
'totals': [
'total_terpenes',
'total_thc',
'total_cbd',
],
'simple': [
'total_thc',
'total_cbd',
],
}
# # Use the data to create an effect prediction model.
# model_name = 'full'
# aromas = [x for x in reviews.columns if x.startswith('aroma')]
# effects = [x for x in reviews.columns if x.startswith('effect')]
# Y = reviews[aromas + effects]
# X = reviews[variates[model_name]]
# print('Estimating model:', model_name)
# effects_model = estimate_discrete_model(X, Y)
# # Calculate statistics for the model.
# model_stats = calculate_model_statistics(effects_model, Y, X)
# # Look at the expected probability of an informed decision.
# stat = 'informedness'
# print(
# f'Mean {stat}:',
# round(model_stats.loc[model_stats[stat] < 1][stat].mean(), 4)
# )
# # Save the model.
# ref = f'public/models/effects/{model_name}'
# model_data = upload_stats_model(
# effects_model,
# ref,
# name=model_name,
# stats=model_stats,
# data_dir=DATA_DIR,
# )
# print('Effects prediction model saved:', ref)
#-------------------------------------------------------------------
# Optional: Use the model to predict the sample and save the
# predictions for easy access in the future.
#-------------------------------------------------------------------
# # Optional: Save the official strain predictions.
# predictions = predict_stats_model(effects_model, X, model_stats['threshold'])
# predicted_effects = predictions.apply(nonzero_rows, axis=1)
# strain_effects = predicted_effects.to_frame()
# strain_effects['strain_name'] = reviews['strain_name']
# strain_effects = strain_effects.groupby('strain_name').first()
# refs = [f'public/data/strains/{x}' for x in strain_effects.index]
# docs = [{
# 'predicted_effects': [y for y in x[0] if y.startswith('effect')],
# 'predicted_aromas': [y for y in x[0] if y.startswith('aroma')],
# } for x in strain_effects.values]
# for i, doc in enumerate(docs):
# stats = {}
# outcomes = doc['predicted_effects'] + doc['predicted_aromas']
# for outcome in outcomes:
# stats[outcome] = model_stats.loc[outcome].to_dict()
# docs[i]['model_stats'] = stats
# docs[i]['model'] = model_name
# update_documents(refs, docs)
# print('Updated %i strain predictions.' % len(docs))
#-------------------------------------------------------------------
# How to use the model in the wild: `full` model.
#-------------------------------------------------------------------
# # 1. Get the model and its statistics.
# model_name = 'full'
# model_ref = f'public/models/effects/{model_name}'
# model_data = get_stats_model(model_ref, data_dir=DATA_DIR)
# model_stats = model_data['model_stats']
# models = model_data['model']
# thresholds = model_stats['threshold']
# # 2. Predict a single sample (below are mean concentrations).
# strain_name = 'Test Sample'
# x = pd.DataFrame([{
# 'delta_9_thc': 10.85,
# 'cbd': 0.29,
# 'cbn': 0.06,
# 'cbg': 0.54,
# 'cbc': 0.15,
# 'thcv': 0.07,
# 'cbda': 0.40,
# 'delta_8_thc': 0.00,
# 'cbga': 0.40,
# 'thca': 8.64,
# 'd_limonene': 0.22,
# 'beta_ocimene': 0.05,
# 'beta_myrcene': 0.35,
# 'beta_pinene': 0.12,
# 'linalool': 0.07,
# 'alpha_pinene': 0.10,
# 'camphene': 0.01,
# 'carene': 0.00,
# 'alpha_terpinene': 0.00,
# 'ocimene': 0.00,
# 'cymene': 0.00,
# 'eucalyptol': 0.00,
# 'gamma_terpinene': 0.00,
# 'terpinolene': 0.80,
# 'isopulegol': 0.00,
# 'geraniol': 0.00,
# 'humulene': 0.06,
# 'nerolidol': 0.01,
# 'guaiol': 0.01,
# 'caryophyllene_oxide': 0.00,
# 'alpha_bisabolol': 0.03,
# 'beta_caryophyllene': 0.18,
# 'alpha_humulene': 0.03,
# 'p_cymene': 0.00,
# 'terpinene': 0.00,
# }])
# prediction = predict_stats_model(models, x, thresholds)
# outcomes = nonzero_columns(prediction)
# effects = [x for x in outcomes if x.startswith('effect')]
# aromas = [x for x in outcomes if x.startswith('aroma')]
# print(f'Predicted effects:', effects)
# print(f'Predicted aromas:', aromas)
# # 3. Save / log the prediction and model stats.
# timestamp = datetime.now().isoformat()[:19]
# data = {
# 'predicted_effects': effects,
# 'predicted_aromas': aromas,
# 'lab_results': x.to_dict(orient='records')[0],
# 'strain_name': strain_name,
# 'timestamp': timestamp,
# 'model': model_name,
# 'model_stats': model_stats,
# }
# ref = 'models/effects/model_predictions/%s' % (timestamp.replace(':', '-'))
# update_documents([ref], [data])
#-------------------------------------------------------------------
# How to use the model in the wild: `simple` model.
#-------------------------------------------------------------------
# # 1. Get the model and its statistics.
# model_name = 'simple'
# model_ref = f'public/models/effects/{model_name}'
# model_data = get_stats_model(model_ref, data_dir=DATA_DIR)
# model_stats = model_data['model_stats']
# models = model_data['model']
# thresholds = model_stats['threshold']
# # 2. Predict samples.
# x = pd.DataFrame([
# {'total_cbd': 1.8, 'total_thc': 18.0},
# {'total_cbd': 1.0, 'total_thc': 20.0},
# {'total_cbd': 1.0, 'total_thc': 30.0},
# {'total_cbd': 7.0, 'total_thc': 7.0},
# ])
# prediction = predict_stats_model(models, x, thresholds)
# outcomes = pd.DataFrame()
# for index, row in prediction.iterrows():
# print(f'\nSample {index}')
# print('-----------------')
# for i, key in enumerate(row['predicted_effects']):
# tpr = round(model_stats['true_positive_rate'][key] * 100, 2)
# fpr = round(model_stats['false_positive_rate'][key] * 100, 2)
# title = key.replace('effect_', '').replace('_', ' ').title()
# print(title, f'(TPR: {tpr}%, FPR: {fpr}%)')
# outcomes = pd.concat([outcomes, pd.DataFrame([{
# 'tpr': tpr,
# 'fpr': fpr,
# 'name': title,
# 'strain_name': index,
# }])])
#-------------------------------------------------------------------
# Example visualization of the predicted outcomes.
#-------------------------------------------------------------------
# # Setup plotting style.
# import seaborn as sns
# import matplotlib.pyplot as plt
# import matplotlib.patches as mpatches
# plt.style.use('fivethirtyeight')
# plt.rcParams.update({
# 'font.family': 'Times New Roman',
# })
# # Create the plot.
# outcomes.sort_values('tpr', ascending=False, inplace=True)
# colors = sns.color_palette('Spectral', n_colors=12)
# colors = [colors[x] for x in [9, 3, 1, 10]]
# sns.catplot(
# x='name',
# y='tpr',
# hue='strain_name',
# data=outcomes,
# kind='bar',
# legend=False,
# aspect=12/8,
# palette=colors,
# )
# handles = []
# ratios = ['10:1', '20:1', '30:1', '1:1']
# for i, ratio in enumerate(ratios):
# patch = mpatches.Patch(color=colors[i], label=ratio)
# handles.append(patch)
# plt.legend(
# loc='upper right',
# title='THC:CBD',
# handles=handles,
# )
# plt.title('Predicted Effects That May be Reported')
# plt.ylabel('True Positive Rate')
# plt.xlabel('Predicted Effect')
# plt.xticks(rotation=90)
# plt.show()
#-------------------------------------------------------------------
# Fin.
#-------------------------------------------------------------------
print('Test finished.')
|