Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# cardiffnlp/twitter-roberta-base-latest-tweet-emotion
|
2 |
|
3 |
-
This is a
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
```python
|
6 |
from transformers import pipeline
|
7 |
text= "@user it also helps that the majority of NFL coaching is inept. Some of Bill O'Brien's play calling was wow, ! #GOPATS"
|
@@ -14,4 +41,17 @@ predictions
|
|
14 |
{'label': 'disgust', 'score': 0.7899409532546997},
|
15 |
{'label': 'joy', 'score': 0.9664386510848999},
|
16 |
{'label': 'optimism', 'score': 0.6123248934745789}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
```
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- cardiffnlp/super_tweeteval
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
---
|
9 |
# cardiffnlp/twitter-roberta-base-latest-tweet-emotion
|
10 |
|
11 |
+
This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for emotion classification (multilabel classification) on the _TweetEmotion_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
|
12 |
+
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m).
|
13 |
|
14 |
+
## Labels
|
15 |
+
<code>
|
16 |
+
"id2label": {
|
17 |
+
"0": "anger",
|
18 |
+
"1": "anticipation",
|
19 |
+
"2": "disgust",
|
20 |
+
"3": "fear",
|
21 |
+
"4": "joy",
|
22 |
+
"5": "love",
|
23 |
+
"6": "optimism",
|
24 |
+
"7": "pessimism",
|
25 |
+
"8": "sadness",
|
26 |
+
"9": "surprise",
|
27 |
+
"10": "trust"
|
28 |
+
}
|
29 |
+
</code>
|
30 |
+
|
31 |
+
## Example
|
32 |
```python
|
33 |
from transformers import pipeline
|
34 |
text= "@user it also helps that the majority of NFL coaching is inept. Some of Bill O'Brien's play calling was wow, ! #GOPATS"
|
|
|
41 |
{'label': 'disgust', 'score': 0.7899409532546997},
|
42 |
{'label': 'joy', 'score': 0.9664386510848999},
|
43 |
{'label': 'optimism', 'score': 0.6123248934745789}]
|
44 |
+
```
|
45 |
+
|
46 |
+
## Citation Information
|
47 |
+
|
48 |
+
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
|
49 |
+
|
50 |
+
```bibtex
|
51 |
+
@inproceedings{antypas2023supertweeteval,
|
52 |
+
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
|
53 |
+
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
|
54 |
+
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
|
55 |
+
year={2023}
|
56 |
+
}
|
57 |
```
|