File size: 8,497 Bytes
3f3ed66
f6e0c90
f8f8214
 
e907b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f3ed66
 
 
25a9e24
3f3ed66
25a9e24
 
3f3ed66
1941b34
 
3f3ed66
 
 
 
 
 
25a9e24
 
3f3ed66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba3d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
language: en
datasets:
- tweet_eval
widget:
- text: Covid cases are increasing fast!
model-index:
- name: cardiffnlp/twitter-roberta-base-sentiment-latest
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: tweet_eval
      type: tweet_eval
      config: sentiment
      split: test
    metrics:
    - type: accuracy
      value: 0.7219960924780202
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGM1NzYxOTJjODg5MDllMzNkODk3NGE1NmNjNWJlOWViYWNmOGRjMGI3MTVlYjQyNDY3MzVjYzMyYmZiYzliMyIsInZlcnNpb24iOjF9.uWmmGJR83ee7_Fg5lG_atB8miVSheCmw7fhxZvJSdky1XcuHNSy9-SyRVg8kggNiMcL5vEBCsfFMrS7J134KBw
    - type: f1
      value: 0.7241871382174582
      name: F1 Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2VmZDZkMTI4MDJlMDg5MGFhNDE3YTUxZTdlM2NmNjk5NDcwZDkwNjk4NDEzMzlkMDY5YWU5YTMyMTI3ZDlmNSIsInZlcnNpb24iOjF9.41oMX8kV6C9iICfZlNILOwLMODlYZQXr50sEHX88Eu8-Py2ZCR1raq_fWpTraRE56XBzdFZJQYIGEQxR6GAcCA
    - type: f1
      value: 0.7219960924780202
      name: F1 Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzI4NDljZDcyNGIzMzYwZDJjOWMzNWZkZDZkNWJkYWRkNGEzNGJiNmJiMmJkNDEwMWVhNzM2NDIwNTBjZjdjZCIsInZlcnNpb24iOjF9.Quplp1xsiPIYPLHy7GivJhn9c7BZWI6HfxZ8KimWUuFulkLbZxV0iVCrahyVMzfjitJAOE3P7Tt2PqLkkJwADQ
    - type: f1
      value: 0.7208112218231548
      name: F1 Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDU5YTBjZmUzNjI3NGFhNDdkYTM2NWMxZGMwMzM4YmUwNzI1NmZkOGM4OWM1NmNmNzE0ZjAwNWM5Y2JkNTNjYyIsInZlcnNpb24iOjF9.W2yb9xfWNXgj-h4vXvvybT28eI2HNY5-rCLRVtKeZ7hjsgrXO6uhIkm4azSkX17IOcvz89XicjGg9HeAuTroBQ
    - type: precision
      value: 0.7188694819994699
      name: Precision Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjJiYTJjNmE2MTlhZjZkMDQwZTM3NGFkZDM3ZGZjMzEwZGViNDg2ZTk3NzAwNDEzYTNmNWM5M2U3YWRjYTcyNiIsInZlcnNpb24iOjF9.bUL4gT0f_MJ11k0D6HtoOPkLsqwnaR22ym7u4oDCcWN81HUXHjNHRG-v416yQ1cbRaRg4PgkiynS5UBxk8EMBQ
    - type: precision
      value: 0.7219960924780202
      name: Precision Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzcwOTQ5MzM0ZWZjMDk3MzNmN2IxNTJkYjI3ZDY1NGU2MDMyMDJjMTcyYWYwNmIxZmMwMWJiZDQyODE4ODA1YyIsInZlcnNpb24iOjF9.c2iXrDnKQ_fIX017v1WhCcisAuLOCTRkct9_wIg59c8Wt7heKvL3kg8phfuOmUv9vzZtTctdhzoeXCurQcRsBA
    - type: precision
      value: 0.7260700483940776
      name: Precision Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDI3ZmI3OGE4MTI1MmI1ZDM4ZGRmNGI1NDMxMzkwNzkwYjhiNWZjZGE2MjEzZDY0NDIwMWI4ZWNlNDc0ZmJiNyIsInZlcnNpb24iOjF9.aaYwzGJLwDsfALehisQKoEO8cx7yazGAq3oktqL-hC9o4J3YH1mke8_ab3PeOtYiVwYy-Ek_jvo2JAfeanRYCw
    - type: recall
      value: 0.7350898220292059
      name: Recall Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjdiZDVjZTVhYzEyNjM1ZTMyZjVkOTljYjIwMTM0YmQxYjU5OGY3ZGE5NjYwZWRlOGEyMDg0NjNlODJiYTkzOCIsInZlcnNpb24iOjF9.zpUj26PoWaX8tgIv_PM1xAwGsezVF1sEAkpGY9YY98z3wec67765MVSWGFwk6mzdQQD5S0hLfvmgSyus1qJpCQ
    - type: recall
      value: 0.7219960924780202
      name: Recall Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDliYTA5ZDQ0YjZjN2NjMmI0Y2NhYTQzMjM2MWYzYjUzMjg3NjkyOWQzYmU0NmVhYWZlYmJkNzdmMWJkZDJiMiIsInZlcnNpb24iOjF9.BLIIEbAnz72FSwxC7GaBGJp1T1kMb23rR1owVfJE7pcVHcALRpSH-ztdYHgs_dQw7_uZibYRXcoCtIfwHzaFBg
    - type: recall
      value: 0.7219960924780202
      name: Recall Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTllZWVhMzVjNjZlNWI5MzIyM2E4YjI4ZjFkZDgwNDAwNWYyYWY0ZTM0MzE5MTJhNmYyMjIwMTFiN2ExNzYxZSIsInZlcnNpb24iOjF9.9F7TUcFAWutxhWAEoJMz-ExjL8Zr-KPAYaUxYpQiGTDuhSfWAgIi580-S8QoS_pSsIoAOjD3J5tG8GDLC4-2Cw
    - type: loss
      value: 0.6139620542526245
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjA4MDcyNTA3ODRhMmZiNDBlMGU3YTk4MzBmY2NlYWYzM2YzYjRkZDEwNWJhOTM2M2VkZDQ1ZjdhOGFkMDAxNiIsInZlcnNpb24iOjF9.VuIi5ytIm14OrN1mrgEgYu1nu2GHhK6KWcrwfKEzzF_1CXmkXQnmOK_NIdstTvbHrqPnkwEwAqctbO37Tr-GDg
---


# Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2022)

This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark. 
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. 

- Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). 
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).

<b>Labels</b>: 
0 -> Negative;
1 -> Neutral;
2 -> Positive

This sentiment analysis model has been integrated into [TweetNLP](https://github.com/cardiffnlp/tweetnlp). You can access the demo [here](https://tweetnlp.org).

## Example Pipeline
```python
from transformers import pipeline
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Covid cases are increasing fast!")
```
```
[{'label': 'Negative', 'score': 0.7236}]
```

## Full classification example

```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
#model.save_pretrained(MODEL)
text = "Covid cases are increasing fast!"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Covid cases are increasing fast!"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = config.id2label[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")
```

Output: 

```
1) Negative 0.7236
2) Neutral 0.2287
3) Positive 0.0477
```


### References 
```
@inproceedings{camacho-collados-etal-2022-tweetnlp,
    title = "{T}weet{NLP}: Cutting-Edge Natural Language Processing for Social Media",
    author = "Camacho-collados, Jose  and
      Rezaee, Kiamehr  and
      Riahi, Talayeh  and
      Ushio, Asahi  and
      Loureiro, Daniel  and
      Antypas, Dimosthenis  and
      Boisson, Joanne  and
      Espinosa Anke, Luis  and
      Liu, Fangyu  and
      Mart{\'\i}nez C{\'a}mara, Eugenio" and others,
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, UAE",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.emnlp-demos.5",
    pages = "38--49"
}

```

```
@inproceedings{loureiro-etal-2022-timelms,
    title = "{T}ime{LM}s: Diachronic Language Models from {T}witter",
    author = "Loureiro, Daniel  and
      Barbieri, Francesco  and
      Neves, Leonardo  and
      Espinosa Anke, Luis  and
      Camacho-collados, Jose",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-demo.25",
    doi = "10.18653/v1/2022.acl-demo.25",
    pages = "251--260"
}

```