File size: 1,875 Bytes
06cc161 27415c7 06cc161 9857884 8933b1b 06cc161 4b0bf5c 1c8345f 06cc161 1c8345f 06cc161 1c8345f 8933b1b 1c8345f b2ec972 1c8345f 8933b1b 06cc161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- en
license: mit
datasets:
- cardiffnlp/super_tweeteval
pipeline_tag: text-classification
widget:
- text: "In this bullpen, you should be able to ask why and understand why we do the things we do.' @Trisha_Ford π #pitchstock2020 @user</s>Castro needs to be the last bullpen guy to pitch.</s>bullpen"
---
# cardiffnlp/twitter-roberta-base-tempo-wic-latest
This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for meaning shift detection (binary classification) on the _TempoWIC_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m).
## Labels
"id2label": {
"0": "no",
"1": "yes"
}
## Example
```python
from transformers import pipeline
text_1 = "'In this bullpen, you should be able to ask why and understand why we do the things we do.' @Trisha_Ford π #pitchstock2020 @user"
text_2 = "Castro needs to be the last bullpen guy to pitch."
target = "bullpen"
text_input = f"{text_1}</s>{text_2}</s>{target}"
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-base-tempo-wic-latest")
pipe(text_input)
>> [{'label': 'yes', 'score': 0.9964596629142761}]
```
## Citation Information
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
```bibtex
@inproceedings{antypas2023supertweeteval,
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
year={2023}
}
```
|