luisespinosa
commited on
Commit
·
73c9ee0
1
Parent(s):
1b419e5
Update README.md
Browse files
README.md
CHANGED
@@ -2,14 +2,13 @@
|
|
2 |
|
3 |
This is a roBERTa-base model trained on ~58M tweets, described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
4 |
|
5 |
-
|
6 |
## Example Masked Language Model
|
7 |
|
8 |
```python
|
9 |
from transformers import pipeline, AutoTokenizer
|
10 |
import numpy as np
|
11 |
|
12 |
-
MODEL = "cardiffnlp/roberta-base
|
13 |
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
15 |
|
@@ -29,6 +28,8 @@ for text in texts:
|
|
29 |
print_candidates()
|
30 |
```
|
31 |
|
|
|
|
|
32 |
```
|
33 |
------------------------------
|
34 |
I am so <mask> 😊
|
@@ -44,4 +45,7 @@ I am so <mask> 😢
|
|
44 |
3) tired 0.138
|
45 |
4) sick 0.0278
|
46 |
5) hungry 0.0232
|
47 |
-
```
|
|
|
|
|
|
|
|
2 |
|
3 |
This is a roBERTa-base model trained on ~58M tweets, described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
4 |
|
|
|
5 |
## Example Masked Language Model
|
6 |
|
7 |
```python
|
8 |
from transformers import pipeline, AutoTokenizer
|
9 |
import numpy as np
|
10 |
|
11 |
+
MODEL = "cardiffnlp/twitter-roberta-base"
|
12 |
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
|
13 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
14 |
|
|
|
28 |
print_candidates()
|
29 |
```
|
30 |
|
31 |
+
Output:
|
32 |
+
|
33 |
```
|
34 |
------------------------------
|
35 |
I am so <mask> 😊
|
|
|
45 |
3) tired 0.138
|
46 |
4) sick 0.0278
|
47 |
5) hungry 0.0232
|
48 |
+
```
|
49 |
+
|
50 |
+
## Example Feature Extraction
|
51 |
+
TODO
|