--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fedcsis-intent_baseline-xlm_r-pl results: [] --- # fedcsis-intent_baseline-xlm_r-pl This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [leyzer-fedcsis](https://huggingface.co/cartesinus/leyzer-fedcsis) dataset. Results on test set: - Accuracy: **0.959451** It achieves the following results on the evaluation set: - Loss: **0.1602** - Accuracy: **0.9671** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 3.4745 | 1.0 | 798 | 1.5821 | 0.6795 | 0.6795 | | 1.1438 | 2.0 | 1596 | 0.8333 | 0.8259 | 0.8259 | | 0.7546 | 3.0 | 2394 | 0.4991 | 0.9039 | 0.9039 | | 0.3955 | 4.0 | 3192 | 0.3466 | 0.9302 | 0.9302 | | 0.3016 | 5.0 | 3990 | 0.2571 | 0.9440 | 0.9440 | | 0.183 | 6.0 | 4788 | 0.2147 | 0.9588 | 0.9588 | | 0.1309 | 7.0 | 5586 | 0.1900 | 0.9605 | 0.9605 | | 0.1128 | 8.0 | 6384 | 0.1750 | 0.9640 | 0.9640 | | 0.0873 | 9.0 | 7182 | 0.1638 | 0.9663 | 0.9663 | | 0.082 | 10.0 | 7980 | 0.1602 | 0.9671 | 0.9671 | ### Framework versions - Transformers 4.27.0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2 ## Citation If you use this model, please cite the following: ``` @inproceedings{kubis2023caiccaic, author={Marek Kubis and Paweł Skórzewski and Marcin Sowański and Tomasz Ziętkiewicz}, pages={1319–1324}, title={Center for Artificial Intelligence Challenge on Conversational AI Correctness}, booktitle={Proceedings of the 18th Conference on Computer Science and Intelligence Systems}, year={2023}, doi={10.15439/2023B6058}, url={http://dx.doi.org/10.15439/2023B6058}, volume={35}, series={Annals of Computer Science and Information Systems} } ```