cartesinus
commited on
Commit
·
b7ff3b8
1
Parent(s):
6765ef4
Update README.md
Browse files
README.md
CHANGED
@@ -10,6 +10,10 @@ metrics:
|
|
10 |
model-index:
|
11 |
- name: fedcsis-slot_baseline-xlm_r-pl
|
12 |
results: []
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,7 +21,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# fedcsis-slot_baseline-xlm_r-pl
|
19 |
|
20 |
-
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
It achieves the following results on the evaluation set:
|
22 |
- Loss: 0.1009
|
23 |
- Precision: 0.9579
|
@@ -65,10 +77,92 @@ The following hyperparameters were used during training:
|
|
65 |
| 0.0168 | 9.0 | 7182 | 0.1009 | 0.9577 | 0.9516 | 0.9546 | 0.9861 |
|
66 |
| 0.016 | 10.0 | 7980 | 0.1009 | 0.9579 | 0.9512 | 0.9546 | 0.9860 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
- Transformers 4.27.4
|
72 |
- Pytorch 1.13.1+cu116
|
73 |
- Datasets 2.11.0
|
74 |
-
- Tokenizers 0.13.2
|
|
|
10 |
model-index:
|
11 |
- name: fedcsis-slot_baseline-xlm_r-pl
|
12 |
results: []
|
13 |
+
datasets:
|
14 |
+
- cartesinus/leyzer-fedcsis
|
15 |
+
language:
|
16 |
+
- pl
|
17 |
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
21 |
|
22 |
# fedcsis-slot_baseline-xlm_r-pl
|
23 |
|
24 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the
|
25 |
+
[leyzer-fedcsis](https://huggingface.co/cartesinus/leyzer-fedcsis) dataset.
|
26 |
+
|
27 |
+
Results on test set:
|
28 |
+
- Precision: 0.9621
|
29 |
+
- Recall: 0.9583
|
30 |
+
- F1: 0.9602
|
31 |
+
- Accuracy: 0.9857
|
32 |
+
|
33 |
It achieves the following results on the evaluation set:
|
34 |
- Loss: 0.1009
|
35 |
- Precision: 0.9579
|
|
|
77 |
| 0.0168 | 9.0 | 7182 | 0.1009 | 0.9577 | 0.9516 | 0.9546 | 0.9861 |
|
78 |
| 0.016 | 10.0 | 7980 | 0.1009 | 0.9579 | 0.9512 | 0.9546 | 0.9860 |
|
79 |
|
80 |
+
### Per slot evaluation
|
81 |
+
|
82 |
+
| slot_name | precision | recall | f1 | tc_size |
|
83 |
+
|-----------|-----------|--------|----|---------|
|
84 |
+
| album | 0.2000 | 0.3333 | 0.2500 | 9 |
|
85 |
+
| all_lang | 1.0000 | 1.0000 | 1.0000 | 5 |
|
86 |
+
| artist | 0.9341 | 0.9444 | 0.9392 | 90 |
|
87 |
+
| av_alias | 0.6667 | 0.8000 | 0.7273 | 5 |
|
88 |
+
| caption | 0.9651 | 0.9432 | 0.9540 | 88 |
|
89 |
+
| category | 0.0000 | 0.0000 | 0.0000 | 1 |
|
90 |
+
| category_a | 1.0000 | 0.9167 | 0.9565 | 12 |
|
91 |
+
| category_b | 1.0000 | 1.0000 | 1.0000 | 25 |
|
92 |
+
| channel | 0.9492 | 0.9333 | 0.9412 | 60 |
|
93 |
+
| channel_id | 0.9701 | 0.9644 | 0.9673 | 337 |
|
94 |
+
| count | 1.0000 | 0.9167 | 0.9565 | 12 |
|
95 |
+
| date | 0.9764 | 0.9841 | 0.9802 | 126 |
|
96 |
+
| date_day | 1.0000 | 0.9500 | 0.9744 | 20 |
|
97 |
+
| date_month | 0.9677 | 1.0000 | 0.9836 | 30 |
|
98 |
+
| device_name | 0.9091 | 1.0000 | 0.9524 | 10 |
|
99 |
+
| email | 1.0000 | 0.9913 | 0.9956 | 115 |
|
100 |
+
| event_name | 0.8788 | 0.9355 | 0.9063 | 31 |
|
101 |
+
| file_name | 0.9778 | 0.9778 | 0.9778 | 45 |
|
102 |
+
| file_size | 1.0000 | 1.0000 | 1.0000 | 12 |
|
103 |
+
| filename | 0.9722 | 0.9589 | 0.9655 | 73 |
|
104 |
+
| filter | 1.0000 | 1.0000 | 1.0000 | 35 |
|
105 |
+
| from | 0.9811 | 0.9123 | 0.9455 | 57 |
|
106 |
+
| hashtag | 1.0000 | 1.0000 | 1.0000 | 28 |
|
107 |
+
| img_query | 0.9707 | 0.9678 | 0.9693 | 342 |
|
108 |
+
| label | 1.0000 | 1.0000 | 1.0000 | 5 |
|
109 |
+
| location | 0.9766 | 0.9728 | 0.9747 | 257 |
|
110 |
+
| mail | 1.0000 | 1.0000 | 1.0000 | 3 |
|
111 |
+
| message | 0.9250 | 0.9487 | 0.9367 | 117 |
|
112 |
+
| mime_type | 0.9375 | 1.0000 | 0.9677 | 15 |
|
113 |
+
| name | 0.9412 | 0.9796 | 0.9600 | 49 |
|
114 |
+
| pathname | 0.8889 | 0.8889 | 0.8889 | 18 |
|
115 |
+
| percent | 1.0000 | 1.0000 | 1.0000 | 3 |
|
116 |
+
| phone_number | 0.9774 | 0.9774 | 0.9774 | 177 |
|
117 |
+
| phone_type | 1.0000 | 1.0000 | 1.0000 | 21 |
|
118 |
+
| picture_url | 0.9846 | 0.9412 | 0.9624 | 68 |
|
119 |
+
| playlist | 0.9516 | 0.9672 | 0.9593 | 122 |
|
120 |
+
| portal | 0.9869 | 0.9869 | 0.9869 | 153 |
|
121 |
+
| priority | 0.7500 | 1.0000 | 0.8571 | 6 |
|
122 |
+
| purpose | 0.0000 | 0.0000 | 0.0000 | 5 |
|
123 |
+
| query | 0.9663 | 0.9690 | 0.9677 | 355 |
|
124 |
+
| rating | 0.9630 | 0.9286 | 0.9455 | 28 |
|
125 |
+
| review_count | 1.0000 | 1.0000 | 1.0000 | 20 |
|
126 |
+
| section | 0.9730 | 0.9730 | 0.9730 | 74 |
|
127 |
+
| seek_time | 1.0000 | 1.0000 | 1.0000 | 3 |
|
128 |
+
| sender | 1.0000 | 1.0000 | 1.0000 | 6 |
|
129 |
+
| sender_address | 1.0000 | 0.9444 | 0.9714 | 18 |
|
130 |
+
| song | 0.8824 | 0.8898 | 0.8861 | 118 |
|
131 |
+
| src_lang_de | 0.9880 | 0.9762 | 0.9820 | 84 |
|
132 |
+
| src_lang_en | 0.9455 | 0.9630 | 0.9541 | 54 |
|
133 |
+
| src_lang_es | 0.9853 | 0.9306 | 0.9571 | 72 |
|
134 |
+
| src_lang_fr | 0.9733 | 0.9733 | 0.9733 | 75 |
|
135 |
+
| src_lang_it | 0.9872 | 0.9506 | 0.9686 | 81 |
|
136 |
+
| src_lang_pl | 0.9818 | 1.0000 | 0.9908 | 54 |
|
137 |
+
| status | 0.8810 | 0.9487 | 0.9136 | 39 |
|
138 |
+
| subject | 0.9636 | 0.9725 | 0.9680 | 109 |
|
139 |
+
| text_de | 0.9762 | 0.9762 | 0.9762 | 84 |
|
140 |
+
| text_en | 0.9796 | 0.9697 | 0.9746 | 99 |
|
141 |
+
| text_es | 0.8734 | 0.9583 | 0.9139 | 72 |
|
142 |
+
| text_fr | 0.9733 | 0.9733 | 0.9733 | 75 |
|
143 |
+
| text_it | 0.9872 | 0.9506 | 0.9686 | 81 |
|
144 |
+
| text_multi | 0.0000 | 0.0000 | 0.0000 | 4 |
|
145 |
+
| text_pl | 0.9310 | 1.0000 | 0.9643 | 54 |
|
146 |
+
| time | 0.9063 | 0.8788 | 0.8923 | 33 |
|
147 |
+
| to | 0.9648 | 0.9648 | 0.9648 | 199 |
|
148 |
+
| topic | 0.0000 | 0.0000 | 0.0000 | 3 |
|
149 |
+
| translator | 0.9838 | 0.9838 | 0.9838 | 185 |
|
150 |
+
| trg_lang_de | 0.9474 | 0.9730 | 0.9600 | 37 |
|
151 |
+
| trg_lang_en | 1.0000 | 0.9565 | 0.9778 | 46 |
|
152 |
+
| trg_lang_es | 0.9792 | 0.9792 | 0.9792 | 48 |
|
153 |
+
| trg_lang_fr | 0.9808 | 1.0000 | 0.9903 | 51 |
|
154 |
+
| trg_lang_general | 0.9500 | 0.9500 | 0.9500 | 20 |
|
155 |
+
| trg_lang_it | 0.9825 | 0.9492 | 0.9655 | 59 |
|
156 |
+
| trg_lang_pl | 0.9302 | 0.9756 | 0.9524 | 41 |
|
157 |
+
| txt_query | 0.9375 | 0.9146 | 0.9259 | 82 |
|
158 |
+
| username | 0.9615 | 0.8929 | 0.9259 | 28 |
|
159 |
+
| value | 0.8750 | 0.8750 | 0.8750 | 8 |
|
160 |
+
| weight | 1.0000 | 1.0000 | 1.0000 | 3 |
|
161 |
+
|
162 |
|
163 |
### Framework versions
|
164 |
|
165 |
- Transformers 4.27.4
|
166 |
- Pytorch 1.13.1+cu116
|
167 |
- Datasets 2.11.0
|
168 |
+
- Tokenizers 0.13.2
|