--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fedcsis_translated-intent_baseline-xlm_r-pl results: [] --- # fedcsis_translated-intent_baseline-xlm_r-pl This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [leyzer-fedcsis-translated](https://huggingface.co/datasets/cartesinus/leyzer-fedcsis-translated) dataset. Results on untranslated test set: - Accuracy: 0.8769 It achieves the following results on the evaluation set: - Loss: 0.5478 - Accuracy: 0.8769 - F1: 0.8769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 3.505 | 1.0 | 814 | 1.8819 | 0.5979 | 0.5979 | | 1.5056 | 2.0 | 1628 | 1.1033 | 0.7611 | 0.7611 | | 1.0892 | 3.0 | 2442 | 0.7402 | 0.8470 | 0.8470 | | 0.648 | 4.0 | 3256 | 0.5263 | 0.8902 | 0.8902 | | 0.423 | 5.0 | 4070 | 0.4253 | 0.9152 | 0.9152 | | 0.3429 | 6.0 | 4884 | 0.3654 | 0.9194 | 0.9194 | | 0.2464 | 7.0 | 5698 | 0.3213 | 0.9273 | 0.9273 | | 0.1873 | 8.0 | 6512 | 0.3065 | 0.9328 | 0.9328 | | 0.1666 | 9.0 | 7326 | 0.3046 | 0.9345 | 0.9345 | | 0.1459 | 10.0 | 8140 | 0.2911 | 0.9370 | 0.9370 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2