File size: 1,786 Bytes
8f9c584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab9729
 
 
8f9c584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab9729
 
 
 
 
8f9c584
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- iva_mt_wslot
metrics:
- bleu
model-index:
- name: seq2seq-imlla-test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# seq2seq-imlla-test

This model is a fine-tuned version of [](https://huggingface.co/) on the iva_mt_wslot dataset.
It achieves the following results on the evaluation set:
- Loss: 6.0627
- Bleu: 0.0253
- Gen Len: 5.1184

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Bleu   | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:-------:|
| 7.4078        | 0.9992 | 636  | 7.0700          | 0.0    | 3.9948  |
| 6.525         | 2.0    | 1273 | 6.4606          | 0.0225 | 6.3877  |
| 6.082         | 2.9992 | 1909 | 6.2044          | 0.0103 | 4.9663  |
| 5.8782        | 4.0    | 2546 | 6.1041          | 0.0248 | 5.9008  |
| 5.756         | 4.9961 | 3180 | 6.0627          | 0.0253 | 5.1184  |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1