--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: slurp-slot_baseline-xlm_r-en results: [] --- # slurp-slot_baseline-xlm_r-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3263 - Precision: 0.8145 - Recall: 0.8641 - F1: 0.8386 - Accuracy: 0.9341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.1437 | 1.0 | 720 | 0.5236 | 0.6852 | 0.6623 | 0.6736 | 0.8860 | | 0.5761 | 2.0 | 1440 | 0.3668 | 0.7348 | 0.7829 | 0.7581 | 0.9119 | | 0.3087 | 3.0 | 2160 | 0.2996 | 0.7925 | 0.8280 | 0.8099 | 0.9270 | | 0.2631 | 4.0 | 2880 | 0.2959 | 0.7872 | 0.8487 | 0.8168 | 0.9275 | | 0.1847 | 5.0 | 3600 | 0.3121 | 0.7929 | 0.8373 | 0.8145 | 0.9290 | | 0.1518 | 6.0 | 4320 | 0.3117 | 0.8080 | 0.8601 | 0.8332 | 0.9329 | | 0.1232 | 7.0 | 5040 | 0.3153 | 0.7961 | 0.8490 | 0.8217 | 0.9267 | | 0.0994 | 8.0 | 5760 | 0.3125 | 0.8105 | 0.8570 | 0.8331 | 0.9332 | | 0.0968 | 9.0 | 6480 | 0.3242 | 0.8147 | 0.8637 | 0.8385 | 0.9329 | | 0.0772 | 10.0 | 7200 | 0.3263 | 0.8145 | 0.8641 | 0.8386 | 0.9341 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3