Add custom RNN model with attention
Browse files- .gitattributes +1 -0
- config.json +1 -0
- modeling.py +51 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_type": "custom_rnn", "vocab_size": 250002, "hidden_size": 256, "output_size": 2, "cell_type": "RNN", "architecture": "SimpleRecurrentNetworkWithAttention"}
|
modeling.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
class Attention(nn.Module):
|
6 |
+
def __init__(self, hidden_size):
|
7 |
+
super(Attention, self).__init__()
|
8 |
+
self.W1 = nn.Linear(hidden_size, hidden_size)
|
9 |
+
self.W2 = nn.Linear(hidden_size, hidden_size)
|
10 |
+
self.v = nn.Linear(hidden_size, 1, bias=False)
|
11 |
+
|
12 |
+
def forward(self, hidden, encoder_outputs):
|
13 |
+
sequence_len = encoder_outputs.shape[1]
|
14 |
+
hidden = hidden.unsqueeze(1).repeat(1, sequence_len, 1)
|
15 |
+
|
16 |
+
energy = torch.tanh(self.W1(encoder_outputs) + self.W2(hidden))
|
17 |
+
attention = self.v(energy).squeeze(2)
|
18 |
+
attention_weights = torch.softmax(attention, dim=1)
|
19 |
+
|
20 |
+
context = torch.bmm(attention_weights.unsqueeze(1), encoder_outputs).squeeze(1)
|
21 |
+
return context, attention_weights
|
22 |
+
|
23 |
+
class SimpleRecurrentNetworkWithAttention(nn.Module):
|
24 |
+
def __init__(self, input_size, hidden_size, output_size, cell_type='RNN', device='cpu'):
|
25 |
+
super(SimpleRecurrentNetworkWithAttention, self).__init__()
|
26 |
+
|
27 |
+
self.device = device
|
28 |
+
self.embedding = nn.Embedding(input_size, hidden_size)
|
29 |
+
self.attention = Attention(hidden_size * 2)
|
30 |
+
|
31 |
+
if cell_type == 'LSTM':
|
32 |
+
self.rnn = nn.LSTM(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
33 |
+
elif cell_type == 'GRU':
|
34 |
+
self.rnn = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
35 |
+
else:
|
36 |
+
self.rnn = nn.RNN(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
37 |
+
|
38 |
+
self.fc = nn.Linear(hidden_size * 2, output_size)
|
39 |
+
|
40 |
+
def forward(self, inputs):
|
41 |
+
embedded = self.embedding(inputs.to(self.device))
|
42 |
+
rnn_output, hidden = self.rnn(embedded)
|
43 |
+
|
44 |
+
if isinstance(hidden, tuple):
|
45 |
+
hidden = hidden[0]
|
46 |
+
|
47 |
+
hidden = torch.cat((hidden[-2], hidden[-1]), dim=1)
|
48 |
+
context, attention_weights = self.attention(hidden, rnn_output)
|
49 |
+
output = self.fc(context)
|
50 |
+
|
51 |
+
return output, attention_weights
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:213c6e85e32e29debb0eba7922836aa1ec1348d5d26c9629df9463d726aa6957
|
3 |
+
size 259166474
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ffb37461c391f096759f4a9bbbc329da0f36952f88bab061fcf84940c022e98
|
3 |
+
size 17082999
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|