cartesinus commited on
Commit
e945aaf
·
1 Parent(s): f1fb93b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ model-index:
9
+ - name: xlm-r-base-amazon-massive-intent-label_smoothing
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # xlm-r-base-amazon-massive-intent-label_smoothing
17
+
18
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 2.5148
21
+ - Accuracy: 0.8879
22
+ - F1: 0.8879
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 5
48
+ - label_smoothing_factor: 0.4
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
54
+ | 3.3945 | 1.0 | 720 | 2.7175 | 0.7900 | 0.7900 |
55
+ | 2.7629 | 2.0 | 1440 | 2.5660 | 0.8549 | 0.8549 |
56
+ | 2.5143 | 3.0 | 2160 | 2.5389 | 0.8711 | 0.8711 |
57
+ | 2.4678 | 4.0 | 2880 | 2.5172 | 0.8883 | 0.8883 |
58
+ | 2.4187 | 5.0 | 3600 | 2.5148 | 0.8879 | 0.8879 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.24.0
64
+ - Pytorch 1.12.1+cu113
65
+ - Datasets 2.7.0
66
+ - Tokenizers 0.13.2